Cho dãy số 1 , 2 , 3 , 4 , .... , 100. Chứng minh rằng tổng của ba số liên tiếp bất kì trong dãy chia hết cho 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có thể nhé
Có vô vàn số chia hết cho 3 trong dãy số trên
Cái này đã biết từ đầu rồi
co the nha bn
co 34 so chia het cho 3 trong day so do nen co the doi cho cac so dc nha
Đặt S1=a1
S2=a1 + a2
.............
S10=a1+a2+...+a10
+, Nếu 1 trong 10 tổng trên chia hết cho 10 thì ta có đpcm
+, Nếu không có tổng nào chia hết cho 10 thì luôn tồn tại 2 tổng chia 10 có cùng số dư khi chia 10 ( theo nguyên lí DDirrichle )
Suy ra hiêu của 2 tổng đó chia hết cho 10 ( đó là tổng của 1 hay 1 số số trong dãy )-đpcm
Bg: Đặt S1 = a1; S2 = a1+ a2; S3 = a1+a2+a3 ... ;S10 = a1+a2+...+a10. Xét 10 số S1,S2, ... S10 ta có 2 trường hợp như sau :
+) Nếu có 1 số Gk nào đó tận cg = 0 ( Sk = a1+a2 + ... ak, k từ 1 - 10) => tổng của k số a1,a2, ... ak chia hết cho 10 ( đpcm )
+) Nếu k có số nào trong 10 số S1, S2, ... S10 tận cg là 0 => chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cg giống nhau. Ta gọi 2 số đó là : Sm và Mn (1= <m<n=< 10 ) .... Sm = a1+a2 + ... a(m); Mn = a1+a2+ ...a(m)+ a(m1)+ a(m2) + ... + a(n ) .
=> Sn - Sm = a(m+1)+ a(m+2) + ....+ a(n) tận cg là 0 => Tổng của n-m số a( m+1),a(m+2), ..., a(n) chia hết cho 10 ( đpcm ) .
Xét dãy số b1 = a1 , b2 = a1 + a , ........, bm = a1 + a2 +.... + am
khi chia các số hạng của dãy nào cho m thì xảy ra một trong 2 trường hợp sau :
- có một phép chia hết , chẳng hạn : bk \(⋮\) m , thì ta có điều phải chứng minh :
( a1 + a2 + .... + ak ) \(⋮\) m
- không có phép chia hết nào . khi đó tồn tại hai phép chia có cùng số dư , chẳng hạn là bi , bj chia cho m ( với :\(1\le j\le i\le m\) )
\(\Rightarrow\) ( bi - bj ) \(⋮\) m hay ( aj + 1 + aj + 2 + ...... + ai ) \(⋮\) m , ta có đpcm
Trong ba số tự nhiên liên tiếp bất kì có:
-Một số chia hết cho 3, có dạng 3k.
-Một số chia cho 3 dư 1, có dạng 3k + 1.
-Một số chia cho 3 dư 2, có dạng 3k + 2.
Tổng của ba số này là : 3k + 3k + 1 + 3k + 2 = 12k + 3 = 3.(4k + 1) chia hết cho 3.