So sánh M và N :
M = 102021+2 / 102021-1
N = 102021/102021-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10A=\dfrac{10^{2021}+10}{10^{2021}+1}=\dfrac{\left(10^{2021}+1\right)+9}{10^{2021}+1}=\dfrac{10^{2021}+1}{10^{2021}+1}+\dfrac{9}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)
\(10B=\dfrac{10^{2022}+10}{10^{2022}+1}=\dfrac{\left(10^{2022}+1\right)+9}{10^{2022}+1}=\dfrac{10^{2022}+1}{10^{2022}+1}+\dfrac{9}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)
Vì \(10^{2022}>10^{2021}=>10^{2021}+1< 10^{2022}+1\)
\(=>\dfrac{9}{10^{2021}+1}>\dfrac{9}{10^{2022}+1}\)
\(=>10A>10B\)
\(=>A>B\)
Bài 1:
$-1+2-3+4-5+6-7+8-...-2019+2020-2021$
$=(2+4+6+8+...+2020)-(1+3+5+...+2021)$
$=(\frac{2020-2}{2}+1).\frac{2020+2}{2}-(\frac{2021-1}{2}+1).\frac{2021+1}{2}=1021110- 1022121=-1011$
Bài 1 cách 2:
$A=-1+2-3+4-5+6-7+8-....-2019+2020-2021$
$=-1+(2-3)+(4-5)+(6-7)+....+(2020-2021)$
$=-1+\underbrace{(-1)+(-1)+...+(-1)}_{1010}=-1+(-1).1010=-1011$
a) 310 . 315 : 322 + 47 : 44
= 3(10 + 15 - 22 ) + 4(7-4)
= 33 + 43
= ( 3.4)3
=123
b)[ (52 . 53 ) - 72 . 2 ) : 2 ] . 6 = 7 . 25
[ (52 . 53 ) - 72 . 2 ) : 2 ] . 6 = 7 . 32
= 224
102021-1=102020
Có: 1+0+2+0+2+0=5 ko chia hết cho 9
suy ra 102021-1 ko chia hết cho 9
HT
a)
1 n . 1 n + 1 = 1 n ( n + 1 ) 1 n − 1 n + 1 = n + 1 − n n ( n + 1 ) = 1 n ( n + 1 ) ⇒ 1 n . 1 n + 1 = 1 n − 1 n + 1
b) Áp dụng kết quả trên để tính giá trị biểu thức sau:
M = 1 3.4 + 1 4.5 + 1 5.6 + 1 6.7 + 1 7.8 + 1 8.9 + 1 9.10 + 1 10.11 M = 1 3 − 1 4 + 1 4 − 1 5 + 1 5 − 1 6 + 1 6 − 1 7 + 1 7 − 1 8 + 1 8 − 1 9 + 1 9 − 1 10 + 1 10 − 1 11 M = 1 3 − 1 11 M = 8 33
a: \(log_2\left(mn\right)=log_2\left(2^7\cdot2^3\right)=7+3=10\)
\(log_2m+log_2n=log_22^7+log_22^3=7+3=10\)
=>\(log_2\left(mn\right)=log_2m+log_2n\)
b: \(log_2\left(\dfrac{m}{n}\right)=log_2\left(\dfrac{2^7}{2^3}\right)=7-3=4\)
\(log_2m-log_2n=log_22^7-log_22^3=7-3=4\)
=>\(log_2\left(\dfrac{m}{n}\right)=log_2m-log_2n\)
a) \(\log_2\left(mn\right)=\log_2\left(2^7.2^3\right)=\log_22^{7+3}=\log_22^{10}=10.\log_22=10.1=10\)
\(\log_2m+\log_2n=\log_22^7+\log_22^3=7\log_22+3\log_22=7.1+3.1=7+3=10\)
b) \(\log_2\left(\dfrac{m}{n}\right)=\log_2\dfrac{2^7}{2^3}=\log_22^4=4.\log_22=4.1=4\)
\(\log_2m-\log_2n=\log_22^7-\log_22^3=7.\log_22-3\log_22=7.1-3.1=4\)
Ta có:
M=33669:(9×3)=33669:9:3=3741:3=1247
N=33669:9+3=3741+3=3744.
Mà 1247 < 3744
Do đó: 336699:(9×3) < 336699:9+3.
Hay M < N.
Đáp án A
\(M=-2\)
\(N=-\dfrac{1}{3}\)
=> N > M
Ta có `:`
`M =( 102021+2)/(102021-1( 10^{2021} )/(10^{2021}-1)`
`> ( 10^{2021})/(10^{2021}-3)=N`
`=> M > N`