C/m rằng : 33n+2 + 5 * 23n+1 chia hết cho 10 . Với mọi n >0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x^4+2x^3+x^2+x^2+2xy+y^2=0\)
\(\Leftrightarrow\left(x^2+x\right)^2+\left(x+y\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x=0\\x+y=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\end{matrix}\right.\)
b/ 72 chia hết 24 nên ta chỉ cần chứng minh \(A=n^3+23n⋮24\)
\(A=n^3+23n=n\left(n^2+23\right)=n\left[n^2-1+24\right]\)
\(=n\left[\left(n-1\right)\left(n+1\right)+24\right]=n\left(n-1\right)\left(n+1\right)+24n\)
\(24n\) hiển nhiên chia hết 24. Xét \(B=n\left(n-1\right)\left(n+1\right)\)
B là tích 3 số nguyên liên tiếp \(\Rightarrow B⋮3\)
n lẻ \(\Rightarrow n=2k+1\Rightarrow B=\left(2k+1\right)2k.\left(2k+2\right)\)
\(B=4k\left(k+1\right)\left(2k+1\right)\)
\(k\left(k+1\right)\) là tích 2 số nguyên liên tiếp \(\Rightarrow\) chia hết cho 2 \(\Rightarrow B⋮8\)
Mà 3;8 nguyên tố cùng nhau \(\Rightarrow B⋮24\Rightarrow A⋮24\)
x2−4xy+4y2+3
=(x−2y)2+3
Do (x−2y)2≥0∀x,y
(x−2y)2+3≥0+3∀x,y
(x−2y)2+3>0∀x,y
=> Đpcm
b)2x−2x2−1
=−x2−x2+2x−1
=−x2−(x−1)2
=−[x2+(x−y)2]<0
=> đpcm
Chúc bn học tốt
8: \(10n^3-23n^2+14n-5⋮2n-3\)
\(\Leftrightarrow10n^3-15n^2-8n^2+12n+2n-3-2⋮2n-3\)
=>\(2n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{2;1;\dfrac{5}{2};\dfrac{1}{2}\right\}\)
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15