K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

\(A=x^2+13y^2-2xy-11y-x+2017,25\)

\(=\left[x^2-x\left(2y+1\right)+\frac{\left(2y+1\right)^2}{4}\right]+13y^2-\frac{\left(2y+1\right)^2}{4}+2017,25\)

\(=\left(x-\frac{2y+1}{2}\right)^2+12\left(y-\frac{1}{2}\right)^2+2014\ge2014\)

Dấu "=" xảy ra khi y = 1/2 và x = 1

Vậy ...........................................................

19 tháng 10 2016

cảm ơn :)

3 tháng 7 2017

\(A=x^2+13y^2-2xy-11y-x+2018,25\)

\(\Rightarrow A=\left(x^2-2xy+y^2\right)-\left(x-y\right)+\frac{1}{4}+\left(12y^2-12y+3\right)-3+2018\)

\(\Rightarrow A=\left[\left(x-y\right)^2-\left(x-y\right)+\frac{1}{4}\right]+12\left(y^2-y+\frac{1}{4}\right)+2015\)

\(\Rightarrow A=\left(x-y-\frac{1}{2}\right)^2+12\left(y-\frac{1}{2}\right)+2015\ge2015\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\end{cases}}}\)

     Vậy \(Min_A=2015\) khi \(\hept{\begin{cases}x=1\\y=\frac{1}{2}\end{cases}}\)

15 tháng 11 2017

a) \(P=\dfrac{2x-4}{x^2-4x+4}-\dfrac{1}{x-2}=\dfrac{2\left(x-2\right)}{\left(x-2\right)^2}-\dfrac{1}{x-2}\)

\(=\dfrac{2x-4-\left(x-2\right)}{\left(x-2\right)^2}=\dfrac{x-2}{\left(x-2\right)^2}=\dfrac{1}{x-2}\)

ĐKXĐ: \(x\ne2\) nên với x = 2 thì P không được xác định

\(Q=\dfrac{3x+15}{x^2-9}+\dfrac{1}{x+3}-\dfrac{2}{x-3}\)

\(=\dfrac{3\left(x+5\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}-\dfrac{2}{x-3}\)

\(=\dfrac{3x+15+x-3-2\left(x+3\right)}{x^2-9}=\dfrac{2x+6}{x^2-9}=\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{2}{x-3}\)

Tại x = 2 thì \(Q=\dfrac{2}{2-3}=\dfrac{2}{-1}=-2\)

b) Để P < 0 tức \(\dfrac{1}{x-2}< 0\) mà tứ là 1 > 0

nên để P < 0 thì x - 2 < 0 \(\Leftrightarrow x< 2\)

Vậy x < 2 thì P < 0

c) Để Q nguyên tức \(\dfrac{2}{x-3}\) phải nguyên

\(\dfrac{2}{x-3}\) nguyên khi x - 3 \(\inƯ_{\left(2\right)}\)

hay x - 3 \(\in\left\{-2;-1;1;2\right\}\)

Lập bảng :

x - 3 -1 -2 1 2

x 2 1 4 5

Vậy x = \(\left\{1;2;4;5\right\}\) thì Q đạt giá trị nguyên

15 tháng 11 2017

a) \(\dfrac{20x^3}{11y^2}.\dfrac{55y^5}{15x}=\dfrac{20.5.11.x.x^2.y^2.y^3}{11.3.5.x.y^2}=\dfrac{20x^2y^3}{3}\)

b) \(\dfrac{5x-2}{2xy}-\dfrac{7x-4}{2xy}=\dfrac{5x-2-7x+4}{2xy}=\dfrac{-2x+2}{2xy}=\dfrac{2\left(1-x\right)}{2xy}=\dfrac{1-x}{xy}\)

15 tháng 10 2023

1, a) 

Ta có:

\(x^2+2x+1=\left(x+1\right)^2\)

Thay x=99 vào ta có:

\(\left(99+1\right)^2=100^2=10000\)

b) Ta có:

\(x^3-3x^2+3x-1=\left(x-1\right)^3\)

Thay x=101 vào ta có:

\(\left(101-1\right)^3=100^3=1000000\)

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

28 tháng 6 2019

                                                               Bài giải

\(B=\frac{x^2+1}{x^2-x+1}=\frac{x^2+1-x+x}{x^2-x+1}=\frac{x^2+1-x}{x^2-x+1}+\frac{x}{x^2-x+1}=1+\frac{x}{x^2-x+1}\)

\(B\) nhỏ nhất khi \(\frac{x}{x^2-x+1}\) nhỏ nhất

\(\Leftrightarrow\text{ }x\text{ nhỏ nhất}\text{ }\Rightarrow\text{ }x=0\)

Thay \(x=0\) ta có :

 \(B=\frac{x^2+1}{x^2-x+1}=\frac{0^2+1}{0^2-0+1}=\frac{1}{1}=1\)

Vậy \(GTNN\) của \(B=1\)

22 tháng 3 2015

Đặt A=x^2-6xy+13y^2=100

Biến đổi A ta được  A=(x-3y)^2 + (2y)^2 =100

Do 100=6^2 + 8^2 suy ra hoặc x-3y =6 và 2y = 8 hoặc x-3y=8 và 2y=6

giải ra ta được (x;y)={(18;4);(17;3)}

22 tháng 3 2015

Đặt A=1-3x-2x^2 =-(2x^2+3X-1)

biến đổi A ta được A= -1/2 - 2(x+3/2)   =< -1/2

Dấu = xảy ra <=> x=-3/2

        Vậy biểu thức có giá trị lớn nhất là -1/2 <=> x=-3/2