K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: Xét ΔBAE có BA=BE và góc ABE=60 độ

nên ΔBAE đều

c: Xét ΔDBC có góc DBC=góc DCB

nên ΔDBC cân tại D

9 tháng 5 2022

a)  Xét ∆ABD và ∆EBD ta có :

BD chung

góc BAD = góc BED ( = 90 độ)

góc ABD = góc EBD ( gt)

=> ∆ABD=∆EBD  ( ch-gn)

b) Xét tam giác vuông ABC ta có :

Góc A = 90 độ, góc C = 30 độ

Mà góc A + góc C + góc B = 180 độ

=> góc B = 180 - 90 - 30 = 60 độ (1)

Xét tam giác ABE ta có :

BA = BE ( vì  ∆ABD=∆EBD) => tam giác ABE cân tại B

Mà góc B = 60 độ => Tam giác ABE là tam giác đều ( trong tam giác cân, một góc = 60 độ thì tam giác đó là tam giác đều )

 

a)  Xét `∆ABD` và `∆EBD` ta có :

`BD` chung

`hat (BAD) = hat (BED) ( = 90^o)`

`hat(ABD) = hat (EBD)`

`=> ∆ABD=∆EBD  ( ch-gn)`

b) Xét tam giác vuông `ABC` ta có :

`Hat A = 90 độ, hatC = 30 độ`

Mà `hat (A) + hat (C) + hat (B) = 180^o`

`=> hat(B) = 180 - 90 - 30 = 60 độ (1)`

Xét tam giác ABE ta có :

`BA = BE ( vì  ∆ABD=∆EBD) =>` ` triangle ABE `cân tại B

Mà `hat(B)= 60 độ => triangle ABC` là tam giác đều

Bạn tự vẽ hình nha!!!

a.

AB // MN 

=> ABE = BEN (2 góc so le trong)

mà ABE = EBN (BD là tia phân giác của ABC)

=> BEN = EBN 

=> Tam giác NBE cân tại N

=> NB = NE.

b.

AB // MN

mà AB _I_ AC
=> AC _I_ MN

Xét tam giác MAN và tam giác MNC có:

MA = MC (M là trung điểm của AC)

AMN = CMN ( = 90 )

MN là cạnh chung 

=> Tam giác MAN = Tam giác MNC (c.g.c)

=> NAC = NCA

c.

AB // MN

=> BAN = ANM (2 góc so le trong) (1)

=> ABN = MNC (2 góc đồng vị)

mà MNC = MNA (tam giác MAN = tam giác MCN)

=> ABN = MNA (2)

Từ (1) và (2)

=> BAN = ABN

=> Tam giác NAB cân tại N 

=> NB = NA 

mà NB = NE (theo câu a)

=> NA = NE

=> Tam giác NAE cân tại N.

       

29 tháng 4 2016

Vẽ hình nhé

22 tháng 3 2022

Bạn tự vẽ hình nhé!

a, Xét \(\Delta ABC.và.\Delta ABH.có:\)

\(\widehat{BAC}=\widehat{BHA}\) 

\(\widehat{B}.chung\)

\(\Rightarrow\Delta ABC\sim\Delta ABH\)

b, Áp dụng định lý Pytago vào tam giác vuông ABC, ta có:

\(BC^2=AB^2+AC^2\)

\(BC^2=4^2+5^2=41\\ \Rightarrow BC=\sqrt{41}\approx6,4\left(cm\right)\)

Vì \(\Delta ABC\sim\Delta ABH\) và \(\Delta ABC\) có đường cao AH:

\(\Rightarrow\dfrac{BH}{BA}=\dfrac{HC}{AC}\) ( 1 )

Dựa vào tính chất dãy tỉ số bằng nhau, ta lại có:

\(\left(1\right)\Rightarrow\dfrac{BH}{BA}=\dfrac{HC}{AC}=\dfrac{BH+HC}{BA+AC}=\dfrac{BC}{4+5}=\dfrac{6,4}{9}\)

\(\Rightarrow BH=\dfrac{4.6,4}{9}=2,8\left(cm\right)\)