find the maximum value of the expression P = 2x/ x^2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này không khó cách làm thế này:
x2+y2+2x+2y+2xy+5 = (x2 + y2 +1 +2x + 2y+ 2xy)+4
= (x + y +1 )2 +4
Ta có ( x + y +1)2 >= 0 \(\Rightarrow\) ( x +y +1)2 +4 >= 4
Dấu "=" xảy ra khi và chỉ khi x=y=-0,5
Vậy Min(x+y+1)2 = 4 khi và chỉ khi x=y=-0,5.
Xong rồi đó. Có gì sai sót các bạn góp ý nhé.
Đặt \(A=\frac{x+y+z}{3}+\frac{2016}{\sqrt[3]{xyz}}\)
- Tìm giá trị nhỏ nhất :
Áp dụng bđt Cauchy : \(A=\frac{x+y+z}{3}+\frac{2016}{\sqrt[3]{xyz}}\ge\frac{3.\sqrt[3]{xyz}}{3}+\frac{2016}{\sqrt[3]{xyz}}\)
\(\Rightarrow A\ge\sqrt[3]{xyz}+\frac{2016}{\sqrt[3]{xyz}}\ge2\sqrt{\sqrt[3]{xyz}.\frac{2016}{\sqrt[3]{xyz}}}\)
\(\Rightarrow A\ge2\sqrt{2016}=24\sqrt{14}\) .
Dấu "=" xảy ra khi và chỉ khi \(\begin{cases}x=y=z\\\sqrt[3]{xyz}=\frac{2016}{\sqrt[3]{xyz}}\end{cases}\) \(\Leftrightarrow x=y=z=12\sqrt{14}\)
Vậy A đạt giá trị nhỏ nhất bằng \(24\sqrt{14}\) tại \(x=y=z=12\sqrt{14}\)
A=(x+y+1)(x+y+1)+4
A=(x+y+1)2+4
Vậy MinA=4 khi.......... của @Nguyễn Huy Thắng đó mà ghi tiếp
ngu Anh nhưng ko sao dịch dc chữ Find the minimum = tìm GTNN :)
\(2x+y=6\)
\(\Rightarrow y=6-2x\)
\(\text{Thế vào phương trình ta dc:}\)
\(4x^2+\left(6-2x\right)^2\)
\(=4x^2+36-24x+4x^2\)
\(=8x^2-24x+36\)
\(\Leftrightarrow4x\left(2x-6\right)+36\)
Rồi sao nữa quên ùi
ta có : \(2x+y=6\Leftrightarrow y=6-2y\)
thay vào A, ta có:
\(A=4x^2+\left(6-2x\right)^2\)
\(A=8\left(x^2-3x+2,25\right)+18\)
\(A=8\left(x-1,5\right)^2+18\)
\(\Rightarrow A\ge18\)
Ta có
\(1-\frac{2x}{2x+y}=1-\frac{2xy}{2xy+y^2}=\frac{y^2}{2xy+y^2}\left(1\right)\)
Ta lại có
\(\frac{y^2}{2xy+y^2}+\frac{2xy+y^2}{\left(x+y+z\right)^2}\ge\frac{2y}{x+y+z}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow1-\frac{2x}{2x+y}+\frac{2xy+y^2}{\left(x+y+z\right)^2}\ge\frac{2y}{x+y+z}\left(3\right)\)
Tương tự
\(1-\frac{2y}{2y+z}+\frac{2yz+z^2}{\left(x+y+z\right)^2}\ge\frac{2z}{\left(x+y+z\right)}\left(4\right)\)
\(1-\frac{2z}{2z+x}+\frac{2xz+x^2}{\left(x+y+z\right)^2}\ge\frac{2x}{x+y+z}\left(5\right)\)
Lấy (3) + (4) + (5) vế theo vế ta được
\(3-2M+\frac{2\left(xy+yz+zx\right)+x^2+y^2+z^2}{\left(x+y+z\right)^2}\ge\frac{2\left(x+y+z\right)}{x+y+z}\)
\(\Leftrightarrow3-2M+1\ge2\)
\(\Leftrightarrow M\le1\)
Dấu = xảy ra khi \(x=y=z\)
P = \(\frac{2x}{x^2+1}=\frac{x^2+1-x^2+2x-1}{x^2+1}=\frac{x^2+1-\left(x-1\right)^2}{x^2+1}=1-\frac{\left(x-1\right)^2}{x^2+1}\le1\)
Dầu "=" xảy ra <=> x - 1 = 0 <=> x = 1
maxP = 1 <=> x = 1