\(\frac{2}{-4x^2+8x-5}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

Bài này không khó cách làm thế này:

x2+y2+2x+2y+2xy+5 = (x2 + y2 +1 +2x + 2y+ 2xy)+4

= (x + y +1 )2 +4

Ta có ( x + y +1)2 >= 0 \(\Rightarrow\) ( x +y +1)2 +4 >= 4

Dấu "=" xảy ra khi và chỉ khi x=y=-0,5

Vậy Min(x+y+1)2 = 4 khi và chỉ khi x=y=-0,5.

Xong rồi đó. Có gì sai sót các bạn góp ý nhé.

8 tháng 3 2017

x2 + y2 + 2x + 2y + 2xy + 5

= x2 + y2 + 12 + 2x + 2y + 2xy + 4

= (x + y + 1)2 + 4 \(\ge\) 4

18 tháng 11 2015

17

8 tháng 1 2017

A=(x+y+1)(x+y+1)+4

A=(x+y+1)2+4

Vậy MinA=4 khi.......... của @Nguyễn Huy Thắng đó mà ghi tiếp

8 tháng 1 2017

ngu Anh nhưng ko sao dịch dc chữ Find the minimum = tìm GTNN :)

24 tháng 3 2016

\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)=1+\frac{y}{x}+\frac{x}{y}+1\)

\(=\frac{y^2+x^2}{xy}+2\)

mà \(=\frac{y^2+x^2}{xy}\ge0\)

=> giá trị nhỏ nhất của biểu thức là 2

1 tháng 4 2016

SAI rồi , thử x =y xem, phải bằng 4 

17 tháng 2 2020

We have \(\hept{\begin{cases}5x+y-2z=37\left(1\right)\\3x-y+2z=11\end{cases}}\)

\(\Leftrightarrow8x=48\)

\(\Leftrightarrow x=6\)

If x=6 then (1) will become \(y-2z=7\)

\(\Rightarrow2y-4z=14\)

\(\Rightarrow x+2y-2z=20\)

a: \(A=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left(x-2\right)^2+7< =7\)

Dấu '=' xảy ra khi x=2

b: \(B=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)

Dấu '=' xảy ra khi x=1/2

c: \(C=-2\left(x^2-x+\dfrac{5}{2}\right)\)

\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)

Dấu '=' xảy ra khi x=1/2

e: \(E=-\left(x^2+6x+9+1\right)=-\left(x+3\right)^2-1< =-1\)

Dấu = xảy ra khi x=-3

13 tháng 3 2017

\(2x+y=6\)

\(\Rightarrow y=6-2x\)

\(\text{Thế vào phương trình ta dc:}\)

\(4x^2+\left(6-2x\right)^2\)

\(=4x^2+36-24x+4x^2\)

\(=8x^2-24x+36\)

\(\Leftrightarrow4x\left(2x-6\right)+36\)

Rồi sao nữa quên ùi

12 tháng 4 2017

ta có : \(2x+y=6\Leftrightarrow y=6-2y\)

thay vào A, ta có:

\(A=4x^2+\left(6-2x\right)^2\)

\(A=8\left(x^2-3x+2,25\right)+18\)

\(A=8\left(x-1,5\right)^2+18\)

\(\Rightarrow A\ge18\)