Tìm n biết n^5+1 chia hết cho n^3+1
Ai trả lời đúng và nhanh mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (n+3) Chia hết cho (n-1)
Ta có : (n+3)=(n-1)+4
Vì (n-1) chia hết cho (n-1)
Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)
=> n-1 thuộc Ư(4)={1;2;4}
n-1 1 2 4
n 2 3 5
Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)
b)(4n+3) chia hết cho (2n+1)
Ta có : (4n+3)=2n.2+1+2
Vì (2n+1) chia hết cho (2n+1)
Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)
=> 2n+1 thuộc Ư(3)={1;3}
2n+1 1 3
2n 0 2
n 0 1
Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)
2n + 3 ⋮ n + 5
=> 2n + 10 - 7 ⋮ n + 5
=> 2(n + 5) - 7 ⋮ n + 5
2(n + 5) ⋮ n + 5
=> 7 ⋮ n + 5
=> n + 5 ∈ Ư(7) = {-1; 1; -7; 7}
=> n thuộc {-6; -4; -12; 2}
vậy_
b tương tự
Ta thấy n ; n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(n+2) chia hết cho 2
Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Vậy n.(n+1).(n+5) chia hết cho 3
=> n.(n+1).(n+5) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
=> ĐPCM
k mk nha
vì n ( n + 1 ) ( n + 5 ) chia hết cho 6 => n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
+) ta thấy n ( n + 1 ) là tích của 2 số tự nhiên liên tiếp , mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn chia hết cho 2 => n ( n + 1 ) chia hết cho 2 => n ( n + 1 ) ( n + 5 ) chia hết cho 2
+) đem chia n cho 3 xảy ra 3 trường hợp về số dư : dư 0 ; dư 1 ; dư 2
- nếu n chia cho 3 dư 0 => n chia hết cho 3 = > n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 1 => n = 3k + 1 ( k e N* )
khi đó n + 5 = 3k + 1 + 5 = 3k + 6 = 3 ( k + 2 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 2 => n = 3k + 2 ( k e N* )
khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
mà ƯCLN( 2 ; 3 ) = 1
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 . 3
=> n ( n + 1 ) ( n + 2 ) chia hết cho 6
chúc bạn học tốt
^^
1) Ta có: \(n^2+n+17=n.\left(n+1\right)+17\)
- Để \(n^2+n+17⋮n+1\)\(\Rightarrow\)\(n.\left(n+1\right)+17⋮n+1\)mà \(n.\left(n+1\right)⋮n+1\)
\(\Rightarrow\)\(17⋮n+1\)\(\Rightarrow\)\(n+1\inƯ\left(17\right)\in\left\{\pm1;\pm17\right\}\)
- Ta có bảng giá trị:
\(n+1\) | \(-1\) | \(1\) | \(-17\) | \(17\) |
\(n\) | \(-2\) | \(0\) | \(-18\) | \(16\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-18,-2,0,16\right\}\)
2) Ta có: \(9-n=\left(-n+3\right)+6=-\left(n-3\right)+6\)
- Để \(9-n⋮n-3\)\(\Rightarrow\)\(-\left(n-3\right)+6⋮n-3\)mà \(-\left(n-3\right)⋮n-3\)
\(\Rightarrow\)\(6⋮n-3\)\(\Rightarrow\)\(n-3\inƯ\left(6\right)\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
- Ta có bảng giá trị:
\(n-3\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-6\) | \(6\) |
\(n\) | \(2\) | \(4\) | \(1\) | \(5\) | \(0\) | \(6\) | \(-3\) | \(9\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-3,0,1,2,4,5,6,9\right\}\)
1) n2 + n + 17 = n(n+1) +17 chia hết cho n + 1
=>17 phải chia hết cho n + 1
=> n + 1 thuộc ước 17 ={1;-1;17;-17}
=> n thuộc {0;16;-2;-18}
Vậy có 4 giá trị n thỏa mãn đề bài
2)9-n = 6 -(n-3) chia hết cho n - 3
=> n - 3 thuộc ước 6 = {1;-1;2;-2;3;-3;6;-6}
=> n thuộc {4;2;5;1;6;0;9;-3}
Vậy có 6 giá trị n thỏa mãn đề bài
Ta có:
a)n-6 chia hết cho n-1
n-1+5 chia hết cho n-1
5 chia hết cho n-1
n-1 thuộc ước của 5
n-1=1 hoặc n-1=5
n thuộc 2;6
b)3-n chia hết cho 1-n
2+1-n chia hết cho 1-n
2 chia hết cho 1-n
1-n thuộc ước của 2
1-n=1 hoặc 1-n=2
n thuộc 0:-1
c)5+n chia hết cho 2+n
3+2+n chia hết cho 2+n
3 chia hết cho 2+n
2+n thuộc ước của
2+n=1 hoặc 2+n=3
n thuộc -1;1
Phan Bảo Huân: 2 + n thuộc ước của ......sao bạn ko điền vào luôn đi