K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

Đầu tiên ta chứng minh: \(\frac{HA}{CA}.\frac{HB}{CB}+\frac{HB}{AB}.\frac{HC}{AC}+\frac{HC}{BC}.\frac{HA}{BA}=1\)


Đặt \(\frac{HA}{CB}=x;\frac{HB}{AC}=y;\frac{HC}{AB}=z\) ta có: \(xy+yz+zx=1\)
Áp dụng bất đẳng thức Bu - nhi - a cho ba số x, y, z ta có: \(\left(xy+yz+zx\right)^2\le\left(x^2+y^2+z^2\right)^2\)
Hay \(\left(x^2+y^2+z^2\right)^2\ge1\Leftrightarrow x^2+y^2+z^2\ge1\)
Giả sử \(\frac{HA}{BC}+\frac{HB}{CA}+\frac{HC}{AB}=x+y+z\)
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx>1+2=3\)
Từ đó suy ra \(x+y+x\ge\sqrt{3}\Leftrightarrow\frac{HA}{BC}+\frac{HB}{CA}+\frac{HC}{AB}\ge\sqrt{3}\).

17 tháng 10 2016

Cái này thì mình chịu thôi ! Có biết cái khỉ gió ma toi gì đâu mà giải ! Hì Hì ! ^_^ Sorry nha

6 tháng 8 2019

A B C H D E F

Gọi D, E, F lần lượt là chân đường cao hạ từ A, B, C của tam giác ABC.

+) \(\Delta AHE~\Delta ACD\)( vì ^HAE =^CAD, ^HEA=^CDA )

=> \(\frac{HA}{CA}=\frac{EA}{AD}\)=> \(\frac{HA}{CA}.\frac{HB}{BC}=\frac{EA}{CA}.\frac{HB}{BC}=\frac{2.EA.HB}{2.CA.BC}=\frac{S_{\Delta AHB}}{S_{ABC}}\)(1)

+) \(\Delta CHD~\Delta CBF\)( vì ^DCH=^FCB, ^CDH=^CFB )

=> \(\frac{CH}{CB}=\frac{CD}{CF}\)=> \(\frac{CH}{CB}.\frac{AH}{AB}=\frac{CD.AH}{CF.AB}=\frac{S_{AHC}}{S_{ABC}}\)(2)

+) \(\Delta ABE~\Delta HBF\)

=> \(\frac{HB}{AB}=\frac{BF}{BE}\Rightarrow\frac{HB}{AB}.\frac{HC}{AC}=\frac{BF.HC}{BE.AC}=\frac{S_{BHC}}{S_{ABC}}\)(3)

Từ (1) ; (2) ; (3) => \(\frac{HA}{CA}.\frac{HB}{BC}+\frac{CH}{CB}.\frac{AH}{AB}+\frac{HB}{AB}.\frac{HC}{AC}=\frac{S_{ABE}}{S_{ABC}}+\frac{S_{ABE}}{S_{ABC}}+\frac{S_{ABE}}{S_{ABC}}=1\)

=> \(\frac{HA}{BC}.\frac{HB}{AC}+\frac{HB}{AC}.\frac{HC}{AB}+\frac{HC}{AB}.\frac{HA}{BC}=1\)

Đặt: \(\frac{HA}{BC}=x;\frac{HB}{AC}=y;\frac{HC}{AB}=z\); x, y, z>0

Ta có: \(xy+yz+zx=1\)

=> \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)=3\)

=> \(x+y+z\ge\sqrt{3}\)

"=" xảy ra khi và chỉ khi x=y=z

Vậy : \(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge\sqrt{3}\)

"=" xảy ra <=> \(\frac{HA}{BC}=\frac{HB}{AC}=\frac{HC}{AB}\)

26 tháng 2 2018

Kẻ HD//AB,HE//ACHD//AB,HE//AC

\(\Rightarrow\)AD=HE;AE=AH

Theo BĐT trong tam giác :

AH<AE+HE=AE+ADAH<AE+HE=AE+AD
 ΔHDC vuông tại H :HC<DC
ΔBHE vuông tại H : HB<BE
\(\Rightarrow\)HA+HB+HC<AE+AD+BE+DC=AB+AC

Chứng minh tương tự ta được:
HA+HB+HC<AB+BCHA+HB+HC<AB+BC 
HA+HB+HC<AC+BCHA+HB+HC<AC+BC
\(\Rightarrow\) 3(HA+HB+HC)<2(AB+AC+BC)

\(\Rightarrow\)HA + HB + HC < \(\frac{2}{3}\)(AB+AC+BC)(ĐPCM)



-> HA+HB+HC<23(AB+AC+BC)

20 tháng 6 2020

Kẻ HD//AB ,HE//AC
−>AD=HE; AE=AH
Theo BĐT trong tam giác :
AH<AE+HE=AE+AD
xét ΔHDC vuông tại H :HC<DC
ΔBHE vuông tại H : HB<BE
−>HA+HB+HC<AE+AD+BE+DC=AB+AC
chứng minh tương tự:
HA+HB+HC<AB+BC
HA+HB+HC<AC+BC
K/h có :

3 (HA+HB+HC) < 2 (AB+AC+BC)
-> HA+ HB + HC< \(\frac{2}{3}\)(AB+AC+BC)

23 tháng 7 2023

a) Ta có: HA = 2RcosA HB = 2RcosB HC = 2RcosC AB = 2RsinC AC = 2RsinB Vậy ta cần chứng minh: 2RcosA + 2RcosB + 2RcosC < 2RsinC + 2RsinB Chia cả 2 vế cho 2R, ta có: cosA + cosB + cosC < sinC + sinB Áp dụng bất đẳng thức tam giác, ta có: sinC + sinB > sin(A + B) = sinCOSA + cosCSINA = cosA + cosB Vậy ta có: cosA + cosB + cosC < sinC + sinB Do đó, ta có HA + HB + HC < AB + AC. b) Ta có: AB + BC + CA = 2R(sinA + sinB + sinC) = 2R(sinA + sinB + sin(A + B)) = 2R(2sin(A + B/2)cos(A - B/2) + sin(A + B)) = 4Rsin(A + B/2)cos(A - B/2) + 2Rsin(A + B) Vậy ta cần chứng minh: 2RcosA + 2RcosB + 2RcosC < 2332​ (4Rsin(A + B/2)cos(A - B/2) + 2Rsin(A + B)) Chia cả 2 vế cho 2R, ta có: cosA + cosB + cosC < 1166​(2sin(A + B/2)cos(A - B/2) + sin(A + B)) Áp dụng bất đẳng thức tam giác, ta có: sin(A + B) > sinC = sin(A + B/2 + B/2) = sin(A + B/2)cos(B/2) + cos(A + B/2)sin(B/2) Vậy ta có: 2sin(A + B/2)cos(A - B/2) + sin(A + B) < 2sin(A + B/2)cos(A - B/2) + sin(A + B/2)cos(B/2) + cos(A + B/2)sin(B/2) = sin(A + B/2)(2cos(A - B/2) + cos(B/2)) + cos(A + B/2)sin(B/2) = sin(A + B/2)(2cos(A - B/2) + cos(B/2)) + sin(B/2)cos(A + B/2) = sin(A + B/2)(2cos(A - B/2) + cos(B/2) + cos(A + B/2)) Vậy ta có: cosA + cosB + cosC < 1166​(2sin(A + B/2)cos(A - B/2) + sin(A + B)) < 1166​(sin(A + B/2)(2cos(A - B/2) + cos(B/2) + cos(A + B/2))) Do đó, ta có HA + HB + HC < 2332​(AB + BC + CA).

25 tháng 5 2018

Kẻ HD//AB,HE//ACHD//AB,HE//AC

−>AD=HE;AE=AH−>AD=HE;AE=AH

Theo BĐT trong tam giác :

AH<AE+HE=AE+ADAH<AE+HE=AE+AD

xét ΔHDCΔHDC vuông tại H :HC<DCHC<DC

ΔBHEΔBHE vuông tại H : HB<BEHB<BE

−>HA+HB+HC<AE+AD+BE+DC=AB+AC−>HA+HB+HC<AE+AD+BE+DC=AB+AC

chứng minh tương tự:

HA+HB+HC<AB+BCHA+HB+HC<AB+BC 

HA+HB+HC<AC+BCHA+HB+HC<AC+BC

K/h có : 3(HA+HB+HC)<2(AB+AC+BC)3(HA+HB+HC)<2(AB+AC+BC)

-> HA+HB+HC<23(AB+AC+BC)HA+HB+HC<23(AB+AC+BC)

6 tháng 8 2019

Câu hỏi của Minh Nguyễn Cao - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo đề bài và bài làm tại link này nhé!

8 tháng 5 2017

A B C H E D

Từ trực tâm H kẻ HD//AB, HE//AC (E thuộc AB, D thuộc AC)

HE//AC. Mà BH vuông góc với AC => BH vuông góc với HE (Quan hệ song song vuông góc)

=> HB<EB (Quan hệ đường xiên, đường vuông góc) (1)

HE//AD, HD//AE => HE=AD, HD=AE (Tính chất đoạn chắn)

Ta có: HA<AD+HD (BĐT tam giác). Thay HD=AE vào biểu thức bên: HA<AD+AE (2)

Tương tự: HD//AB, CH vuông góc với AB => CH vuông góc với HD

=> HC<DC (Đường xiên, đường vuông góc) (3)

Từ (1), (2) và (3) => HA+HB+HC<EB+AD+AE+DC => HA+HB+HC<(EB+AE)+(AD+DC)

                           => HA+HB+HC<AB+AC.  (4)

Tương tự bạn giải ra: HA+HB+HC<AB+BC   (5) 

                                HA+HB+HC<AC+BC   (6)

Từ (4),(5) và (6) => 3(HA+HB+HC)<(AB+AC)+(AB+BC)+(AC+BC) (Cộng vế với vế)

                       => 3(HA+HB+HC)<2AB+2AC+2BC => 3(HA+HB+HC)<2(AB+AC+BC)

                        hay 2(AB+AC+BC)>3(HA+HB+HC) (đpcm) 

**** nha!!!

Vì AB+AC+BC > HA+HB+HC

mà 2(AB+AC+BC) >4(HA+HB+HC)

=> 2(AB+AC+BC)>3(HA+HB+HC)

15 tháng 7 2018

a) Kẻ HD//AB, HE//AC

−>AD=HE;AE=AH
Theo BĐT trong tam giác :

AH < AE+HE = AE+AD

xét  ΔHDC vuông tại H :HC<DC

       ΔBHE vuông tại H : HB<BE

−> HA+HB+HC < AE+AD+BE+DC = AB+AC

chứng minh tương tự:

HA+HB+HC<AB+BC

HA+HB+HC<AC+BC

  -> có : 3(HA+HB+HC)<2(AB+AC+BC)

-> ( HA + HB + HC ) x \(\frac{3}{2}\)
 < AB + AC + BC

bây giờ mik làm có muộn lắm ko bạn???