CMR nếu:
{a+b+c+d} x {a-b-c+d}= {a-b+c-d} x {a+b-c-d}
thì \(\frac{a}{b}=\frac{b}{d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(a+b+c-d\right)\left(a-b-c-d\right)=\left(a+b-c+d\right)\left(a-b+c+d\right)\)
\(\Rightarrow\frac{a+b+c-d}{a+b-c+d}=\frac{a-b+c+d}{a-b-c-d}\Leftrightarrow\frac{\left(a+b\right)+\left(c-d\right)}{\left(a+b\right)-\left(c-d\right)}=\frac{\left(a-b\right)+\left(c+d\right)}{\left(a-b\right)-\left(c+d\right)}.\)
Đặt \(A=a+b;B=c-d;C=a-b;D=c+d.\)Ta được:
\(\frac{A+B}{A-B}=\frac{C+D}{C-D}\Rightarrow\frac{A}{B}=\frac{C}{D}\Leftrightarrow\frac{a+b}{c-d}=\frac{a-b}{c+d}\Rightarrow\frac{a+b}{a-b}=\frac{c-d}{c+d}\)
Vậy ta được:
\(\left(a+b+c-d\right)\left(a-b-c-d\right)=\left(a+b-c+d\right)\left(a-b+c+d\right)\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c-d}{c+d}.\)
Cách 1:Đặt \(\frac{a}{b}=\frac{c}{d}=k;\Rightarrow a=bk,c=dk\Leftrightarrow\)
\(\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)
\(\frac{c}{d}=\frac{dk}{d}=k\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Cách 2:Đặt: a/b = c/d = k => a = bk, c = dk
Ta có:
a + b/a - b = bk + b/bk - b = b(k+1)/ b(k-1) = k+1/k-1 (1)
c + d/c- d = dk +d/ dk - d = d(k+1)/d(k-1) = k+1/k-1 (2)
Từ (1) và (2) => a+b/a-b = c+d/c-d
Vì \(x< y\Rightarrow\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (*)
Thêm ab vào hai vế của (*) : ad + ab < bc + ab
=> a(b+d) < b(a+c)
=> \(\frac{a}{b}< \frac{a+c}{b+d}\)
=> x < z (1)
Thêm cd vào hai vế của (*): ad + cd < bc + cd
=> d(a + c) < c(b + d)
=> \(\frac{a+c}{b+d}< \frac{c}{d}\)
=> z < y (2)
Từ (1) và (2) => x < z < y
Vì x<y⇒ab <cd ⇒ad<bc (*)
Thêm ab vào hai vế của (*) : ad + ab < bc + ab
=> a(b+d) < b(a+c)
=> ab <a+cb+d
=> x < z (1)
Thêm cd vào hai vế của (*): ad + cd < bc + cd
=> d(a + c) < c(b + d)
=> a+cb+d <cd
=> z < y (2)
Từ (1) và (2) => x < z < y
\(\frac{b+c+d}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}=\frac{\left(a+b+c+d-x\right)+\left(x-a\right)}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}\)\(=\frac{\left(a+b+c+d-x\right)}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}+\frac{1}{\left(b-a\right)\left(c-a\right)\left(d-a\right)}\)
Áp dụng hoán vị vòng \(b\rightarrow c\rightarrow d\rightarrow a\rightarrow b\) vào VT , ta được :
\(\left(a+b+c+d-x\right)\)[\(\frac{1}{\left(a-b\right)\left(a-c\right)\left(a-d\right)\left(a-x\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)\left(b-d\right)\left(b-x\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)\left(c-d\right)\left(c-x\right)}\)\(+\frac{1}{\left(d-a\right)\left(d-b\right)\left(d-c\right)\left(d-x\right)}\).
Quy đồng mẫu thức và tính toán biểu thức trong [ ] ta được :
\(\frac{-1}{\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)}\)
Vậy ...............
Ta có:\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad.ab< bc.ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)
và \(ad< bc\Rightarrow ad.cd< bc.cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)(2)
Từ (1) và (2) ta có: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
\(a.\)\(\frac{a}{b}=\frac{c}{d}\)=> \(ad=bc\)=> \(ad+ab=bc+ab\)=> a x ( b + d) = b x ( a + c )
=> \(\frac{a}{b}=\frac{a+c}{b+d}\left(đpcm\right)\)
\(b.\)\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)( Áp dụng tính chất dãy tỉ số bằng nhau )
=>\(\frac{a}{b}=\frac{c}{a}\)=> \(a^2=bc\)( đpcm)