có a+b+c=0
tính a^3+b^3+c^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4\cdot12=1\)
b: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=7^3-3\cdot12\cdot7\)
\(=343-252=91\)
1.
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
Ta có:
\(\dfrac{\left(a+2b\right)^2+\left(b+2c\right)^2+\left(c+2a\right)^2}{\left(a-2b\right)^2+\left(b-2c\right)^2+\left(c-2a\right)^2}\)
\(=\dfrac{a^2+4b^2+4ab+b^2+4c^2+4bc+c^2+4a^2+4ca}{a^2+4b^2-4ab+b^2+4c^2-4bc+c^2+4a^2-4ca}\)
\(=\dfrac{5\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)}{5\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)}\)
\(=\dfrac{-10\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)}{-10\left(ab+bc+ca\right)-4\left(ab+bc+ca\right)}\)
\(=\dfrac{-6}{-14}=\dfrac{3}{7}\)
b.
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3abc\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
\(\Rightarrow\dfrac{ab+2bc+3ca}{3a^2+4b^2+5c^2}=\dfrac{a^2+2a^2+3a^2}{3a^2+4a^2+5a^2}=\dfrac{6}{12}=\dfrac{1}{2}\)
\(M=A+B=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}+3}=\dfrac{\sqrt{x}+2\sqrt{x}}{\sqrt{x}+3}=\dfrac{3\sqrt{x}}{\sqrt{x}+3}\left(x\ge0\right)\)
`M=A+B`
`=sqrtx/(sqrtx+3)+(2sqrtx)/(sqrtx+3)`
`=(sqrtx+2sqrtx)/(sqrtx+3)`
`=(3sqrtx)/(sqrtx+3)`
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow ab+bc+ca=0\)
\(a+b+c=\sqrt{2019}\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=2019\)
\(\Rightarrow a^2+b^2+c^2=2019\) ( vì \(ab+bc+ca=0\))
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\\ A=a^2+b^2+c^2\\ \Leftrightarrow A=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\\ \Leftrightarrow A=\left(\sqrt{2019}\right)^2-2\cdot0=2019\)
Lời giải:
Áp dụng TCDTSBN:
$\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}=\frac{c+d+a-b}{b}=\frac{d+a+b-c}{c}$
$=\frac{a+b+c-d+b+c+d-a+c+d+a-b+d+a+b-c}{d+a+b+c}$
$=\frac{2(a+b+c+d)}{a+b+c+d}=2$
$\Rightarrow a+b+c-d=2d; b+c+d-a=2a; c+d+a-b=2b; d+a+b-c=2c$
$\Rightarrow a+b+c=3d; b+c+d=3a; c+d+a=3b; d+a+b=3c$
Khi đó:
\(P=\frac{a+b+c}{a}.\frac{b+c+d}{b}.\frac{c+d+a}{c}.\frac{a+b+d}{d}\\ =\frac{3d}{a}.\frac{3a}{b}.\frac{3b}{c}.\frac{3c}{d}=81\)
vì a+b+c=0=>a=b=c=0
vậy a^3+b^3+c^3=0
\(a^3+b^3+c^3=a^3+b^3+3a^2b+3ab^2+c^3-3a^2b-3ab^2\)
= \(\left(a+b\right)^3+c^{^{ }^{ }3}-3ab\left(a+b\right)\)
= \(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b\right)\)
= -3ab.-c= 3abc ( a+b+c = o => a+b = -c)