Tìm số tự nhiên n sao cho
a ) 2n + 7 chia hết cho n-2
b ) n mũ hai + 3n + 4 chia hết cho n+3
làm hộ với làm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n mũ 2+3n+4 chia hết cho n+3
=>n(n+3)+4 chia hết cho n+3
=>n(n+3) chia hết cho n+3
và 4 chia hết cho n+3
hay n+3 thuộc Ư(4)
Mà Ư(4)=(-4;-2;-1;1;2;4)
=>n=2;4;7
a) 2n + 7 chia hết cho n - 2
<=> 2n - 4 + 11 chia hết cho n - 2
<=> 2(n - 2) + 11 chia hết cho n - 2
<=> 11 chia hết cho n - 2
<=> n - 2 thuộc Ư(11)={-1;1;-11;11}
=> n thuộc {1;3;13}
n^2 + 3n + 4 chia hết cho n + 3
<=> n(n + 3) + 4 chia hết cho n + 3
<=> 4 chia hết cho n + 3
<=> n + 3 thuộc Ư(4)={-1;1;-4;4}
=> n thuộc {2;4;7}
a) 2n+7=n+n+9-2=(n+9)+(n-2)
Vì n-2 chia hết cho n-2 nên n+9 chia hết cho n-2
n+9=(n-2)+11
Vì n-2 chia hết cho n-2 nên 11 chia hết cho n-2
=>Ư(11)={1,11}
+ Nếu n-2=1 thì n=1+2=3
+ Nếu n-2=11 thì n=11+2=13
Vậy n E {3,13}
b) n2+3n+4=nxn+3n+4=n(n+3)+4
Vì n(n+3) chia hết cho n+3 nên 4 chia hết cho n+3
=>Ư(4)={1,2,4}
+Nếu n+3=1 thì n=1-3(không xảy ra vì n E N)
+Nếu n+3=2 thì n=2-3(không xảy ra vì n E N)
+Nếu n+3=4 thì n=4-3=1
Vậy n=1
a n+9 chia het cho n+4
->(n+9)-(n+4) chia het cho n+4
->5 chia het cho n+4
->n+4 ={1;5}
-> n=-3;-1
b tương tự
c2n+11 chia hết cho n+4
vì n+4 chia hết cho n+4
->2(n+4) chia hết cho n+4
->2n+8 chia hết cho n+4
->(2n+11)-(2n+8) chia hết cho n+4
->3 chia hết cho n+4
->n+4 ={1;3}
-> n=-3 ; -1
d hướng dẫn : gấp n+5 lên 3 lần rồi lấy 3n+28 - 3n+15 =13 chia hết cho n+5
->n+5 ={1;13}
tự làm nốt nha có gì sai thi làm ơn chữa lại nghen
a) n + 2 chia hết cho n - 1
=> n - 1 + 3 chia hết cho n - 1
Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1
Mà n thuộc N => n - 1 > hoặc = -1
=> n - 1 thuộc {-1 ; 1 ; 3}
=> n thuộc {0 ; 2 ; 4}
Những câu còn lại lm tương tự
Giải:
a) \(n+2⋮n-1\)
\(\Rightarrow\left(n-1\right)+3⋮n-1\)
\(\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)
+) \(n-1=1\Rightarrow n=2\)
+) \(n-1=-1\Rightarrow n=0\)
+) \(n-1=3\Rightarrow n=4\)
+) \(n-1=-3\Rightarrow n=-2\)
Vậy \(n\in\left\{2;0;4;-2\right\}\)
b) \(2n+7⋮n+1\)
\(\Rightarrow\left(2n+2\right)+5⋮n+1\)
\(\Rightarrow2\left(n+1\right)+5⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=3\Rightarrow n=2\)
+) \(n+1=-3\Rightarrow n=-4\)
Vậy \(n\in\left\{0;-2;2;-4\right\}\)
Vì 3 n chia hết cho (5-2n)
=>2.3n+3(5-2n)=15 chia hết cho 5-2n
=>5-2n thuộc Ư(15)={1,3,5,15,-1,-3-5-15}
Mặt khác 5-2n nhỏ hơn hoặc bằng 5
5-2n thuộc {-15,-5,-3,-1,1,3,5}
=>N thuộc { 10,5,4,3,2,1,0}
Vì 3n chia hết cho 5-2n
=>2.3n+3(5-2n)=15 chia hết cho 5 - 2n
=> 5-2n thuộc U (15)€{1,3,5,15,-1,-3,-5,-15}
Mặt khác 5 trừ 2 n nhỏ hơn hoặc bằng 5
=>5-2n€{-15,-5,-3,-1,1,3,5}
=>N€{10,5,4,3,2,1,0}