X^4+x^2-20=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-4=0\)
\(\Rightarrow x^2-2^2=0\)
\(\Rightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
b) \(x\left(x+5\right)=9x\)
\(\Rightarrow x^2+5x-9x=0\)
\(\Rightarrow x^2-4x=0\)
\(\Rightarrow x\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
c) \(3x^3-48x=0\)
\(\Rightarrow3x\left(x^2-16\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-16=0\Rightarrow\left(x-4\right)\left(x+4\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
d) \(x^4+x^2-20=0\)
\(\Rightarrow\left(x^2\right)^2+x^2-20=0\)
Đặt x2 = a
\(\Rightarrow a^2+a-20=0\)
\(\Rightarrow a^2+5a-4a-20=0\)
\(\Rightarrow a\left(a+5\right)-4\left(a+5\right)=0\)
\(\Rightarrow\left(a-4\right)\left(a+5\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left(x^2+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x^2+5=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x^2=4\Rightarrow x=\pm2\\x^2=-5\Rightarrow x\in\varnothing\end{matrix}\right.\)
d) x4 + x2 - 20 = 0
\(\Rightarrow\) x4 + x2 = 20
\(\Rightarrow\) x4 + x2 = 24 + 22
\(\Rightarrow\) x = 2
a: =>(2x+1/2)^2=1/4
=>2x+1/2=1/2 hoặc 2x+1/2=-1/2
=>x=-1/2 hoặc x=0
b: =>(x-1/5)^2=49
=>x-1/5=7 hoặc x-1/5=-7
=>x=-6,8 hoặc x=7,2
c: =>1,2x=12
=>x=10
d: =>3/4x+1/2x+1/2=-11/4
=>5/4x=-11/4-2/4=-13/4
=>x=-13/5
e: =>-0,25x+1,25x=0,2
=>x=0,2
Bài 1
1.(x-3)(x+2)-x(x-7)=15
\(\Leftrightarrow x^2+2x-3x-6-x^2+7x=15\)
\(\Leftrightarrow-6+6x=15\)
\(\Leftrightarrow6x=15+6\) =21
\(\Rightarrow x=\dfrac{21}{6}=3,5\)
2.(x-5)(x+5)+x(3-x)=20
\(\Leftrightarrow x^2-25+3x-x^2=20\)
\(\Leftrightarrow-25+3x=20\)
\(\Leftrightarrow3x=20+25=45\)
\(\Rightarrow x=\dfrac{45}{3}=15\)
3.(x-7)2-x(2+x)=-7
\(\Leftrightarrow x^2-14x+49-2x-x^2=-7\)
\(\Leftrightarrow-16x+49=-7\)
\(\Leftrightarrow-16x=-7-49=-56\)
\(\Rightarrow x=\dfrac{-56}{-16}=\dfrac{7}{2}=3,5\)
Tiếp bài 1
4.(x-4)2-(x+4)(x-4)=-16
\(\Leftrightarrow x^2-8x+16-x^2-16=-16\)
\(\Leftrightarrow-8x=-16\)
\(\Rightarrow x=\dfrac{-16}{-8}=2\)
5.(x-5)(x+5)-x(2-3x)=4x2-7
\(\Leftrightarrow x^2-25-2x+3x^2=4x^2-7\)
\(\Leftrightarrow4x^2-25-2x+3x^2=4x^2-7\)
\(\Leftrightarrow4x^2-4x^2-2x=-7+25\)
\(\Leftrightarrow-2x=18\)
\(\Rightarrow x=\dfrac{18}{-2}=-9\)
a, 3 ( x + 1 ) - 2 ( 3 x - 4 ) = - 13
=> 3x + 3 - 6x + 8 = - 13
=> 6x - 3x = 3 + 8 + 13
=> 3x = 24
=> x = 8
b, 2 ( x - 3 ) - 4 ( 2 x - 1 ) = - 20
=> 2x - 6 - 8x + 4 = - 20
=> 8x - 2x = - 6 + 4 + 20
=> 6x = 18
=> x = 3
c, 2 x ( x + 3 ) = 0
=> \(\orbr{\begin{cases}2x=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}}\)
d, ( x - 1 ) ( 5 x - x ) = 0
=> \(\orbr{\begin{cases}x-1=0\\5x-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\4x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=0\end{cases}}}\)
e, ( x + 3 ) 2 ( 4 - x ) = 0
=> \(\orbr{\begin{cases}\left(x+3\right)^2=0\\4-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x+3=0\\4-x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-3\\x=4\end{cases}}}\)
a) \(3\left(x+1\right)-2\left(3x-4\right)=-13\)
\(\Leftrightarrow3x+3-6x+8=-13\)
\(\Leftrightarrow3x-6x=-13-3-8\)
\(\Leftrightarrow-3x=-24\)
\(\Leftrightarrow x=8\)
Vậy \(x=8\)
b) \(2\left(x-3\right)-4\left(2x-1\right)=-20\)
\(\Leftrightarrow2x-6-8x+4=-20\)
\(\Leftrightarrow2x-8x=-20+6-4\)
\(\Leftrightarrow-6x=-18\)
\(\Leftrightarrow x=3\)
Vậy \(x=3\)
c) \(2x\left(x+3\right)=0\)
\(\orbr{\begin{cases}2x=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
d)\(\left(x-1\right)\left(5x-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\4x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
e)\(\left(x+3\right)^2\left(4-x\right)=0\)
\(\orbr{\begin{cases}\left(x+3\right)^2=0\\4-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+3=0\\-x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)
\(\left(x-2\right)\left(4x-20\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\4x-20=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\4x=20\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ \left(x-5\right)\left(25-5x?\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\25-5x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\5x=25\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=5\end{matrix}\right.\\ \left(x-4\right)\left(2x-8\right)\\ \Rightarrow\left[{}\begin{matrix}x-4=0\\2x-8=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4\\2x=8\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=4\end{matrix}\right.\)
a,(x-2)(4x-20)=0
=>x-2=0 hoặc 4x-20=0
=>x=2 hoặc x=5
b,(x-5)(25-5)=0
=>x-5=0 ( vì 25-5 ≠0)
=>x=5
c,(x-4)(2x-8)=0
=>x-4=0 hoặc 2x-8=0
=>x=4
a) 2x2-4x-x+2=0
=> 2x(x-2)-(x-2)=0
=> (2x-1)(x-2)=0
=> \(\left[{}\begin{matrix}2x-1=0\\x-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
b) 3x2-12x+5x-20=0
=> 3x(x-4)+5.(x-4)=0
=> (x-4)(3x+5)=0
=> \(\left[{}\begin{matrix}x-4=0\\3x+5=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=4\\x=-\dfrac{5}{3}\end{matrix}\right.\)
c)x3+2x2-x2-2x+2x+4=0
=> x2(x+2)-x(x+2)+2(x+2)=0
=>(x2-x+2)(x+2)=0
=> x=-2( vi x2-x+2>0)
d) x3-x2-4x2+4x+4x-4=0
=> x2(x-1)-4x(x-1)+4(x-1)=0
=>(x-1)(x2-4x+4)=0
=> \(\left[{}\begin{matrix}x-1=0\\x^2-4x+4=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2x2-5x+2=0
⇔2x2-x-4x+2=0
⇔x(2x-1)-2(2x-1)=0
⇔(x-2)(2x-1)=0
⇔\(\left[{}\begin{matrix}x-2=0\\2x-1=0\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=2\\2x=1\Leftrightarrow x=\dfrac{1}{2}\end{matrix}\right.\)
sậy S=\(\left\{2;\dfrac{1}{2}\right\}\)
x3+x2+4=0
⇔x3+2x2-x2-2x+2x+4=0
⇔(x3+2x2)-(x2+2x)+(2x+4)=0
⇔x2(x+2)-x(x+2)+2(x+2)=0
⇔(x+2)(x2-x+2)=0
⇔x+2=0 và x2-x+2=0
⇔x=-2 và \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\)(vô lý)
vậy S={-2}
1,\(x^4-x=0\\ ->x\left(x-1\right)\left(x^2+x+1\right)=0\\ ->\left(......\right)\)
2\(x^4-x^2=0\\ ->x^2\left(x^2-1\right)\\ ->x^2\left(x-1\right)\left(x+1\right)\\ ->......\)
3,\(x^5+x^2\\ ->x^2\left(x^3+1\right)\\ ->x^2\left(x+1\right)\left(x^2-x+1\right)\\ ->.......\)
4\(3x\left(x-20\right)-x+20=0->\left(3x-1\right)\left(x-20\right)=0->.....\)
\(-x^4+4x^2-5x^2+20=0\\\Rightarrow -(x^4-4x^2)-(5x^2-20)=0\\\Rightarrow-x^2(x^2-4)-5(x^2-4)=0\\\Rightarrow(x^2-4)(-x^2-5)=0\\\Rightarrow-(x-2)(x+2)(x^2+5)=0\\\Rightarrow(2-x)(x+2)=0(vì.x^2+5>0\forall x)\)
\(\Rightarrow\left[{}\begin{matrix}2-x=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
đề bài là j
X^4+x^2-20=0<=>x^4-4x^2+5x^2-20=0<=>x^2(x^2-4)+5(x^2-4)=0<=>(x^2+4)(x^2+5)<=>(x-2)(x+2)(x^2+5)<=>X=2;X=-2