Rút gọn biểu thức:
C=|x-1/7|-|2x+3/5|+4/5khi -3/5<x<1/7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
`a)`
`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`
`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`
`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`
`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`
`=>A=-2x^2+28x-6`
`b)`
`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`
`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`
`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`
`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`
Thay `x=-7` vào ta được:
`B=10(-7)^2-2(-7)^3-7(-7)-6`
`=>B=10.49-2(-343)+49-6`
`=>B=490+686+49-6`
`=>B=1219`
`a)(2x-1)^2+(x+3)^2-5(x-7)(x+7)`
`=4x^2-4x+1+x^2+6x+9-5(x^2-49)`
`=5x^2-5x^2-4x+6x+1+9+245`
`=2x+255`
`b)(x-2)(x^2+2x+4)-(25+x^3)`
`=x^3-8-x^3-25=-33`
Lời giải:
a.
$(2x-1)^2+(x+3)^2-5(x-7)(x+7)$
$=4x^2-4x+1+(x^2+6x+9)-5(x^2-49)$
$=5x^2+2x+10-(5x^2-245)=2x+255$
b.
$(x-2)(x^2+2x+4)-(25+x^3)=(x^3-2^3)-(25+x^3)$
$=-8-25=-33$
\(C=5x^3y^2-4x^3y^2+3x^2y^3+\dfrac{1}{2}x^2y^3+\dfrac{1}{3}x^4y^5-3x^4y^5-\dfrac{1}{7}\)
\(=x^3y^2+\dfrac{7}{2}x^2y^3-\dfrac{8}{3}x^4y^5-\dfrac{1}{7}\)
\(4.\left(3x+y\right)^2+\left(x+y\right)^2\)
\(=3x^2+6xy+y^2+x^2-2xy+y^2\)
\(=9x^2+6xy+y^2+x^2-2xy+y^2\)
\(=10x^2-4xy+2y^2\)
\(7.\left(x-4\right)^2+\left(x+4y\right)\)
\(=x^2-8x+16+x+4y\)
\(=x^2-7x+16+4y\)
\(10.\left(2x+7\right)^2+\left(-2x-3\right)^2\)
\(=4x^2+28x+49+4x^2+12x+9\)
\(=8x^2+40x+58\)
\(12.-\left(x+1\right)^2-\left(x-1\right)^2\)
\(=-\left(x^2+2x+1\right)-\left(x^2-2x+1\right)\)
\(=-x^2-2x-1+x^2+2x-1\)
\(=4x\)
\(5.-\left(x+5\right)^2-\left(x-3\right)^2\)
\(=-\left(x^2+10x+25\right)-\left(x^2-6x+9\right)\)
\(=-x^2-10-25+x^2+6x-9\)
\(=-16x-16\)
\(8.-\left(-2x+3\right)^2-\left(5x-3\right)^2\)
\(=4x^2+12x+9-25x^2+30x-9\)
\(=-21x^2+42x\)
\(11.-\left(2x-y\right)^2-\left(x+3y\right)^2\)
\(=-4x^2+4xy-y^2-\left(x^2+6xy+9y^2\right)\)
\(=-4x^2+4xy-y^2-x^2-6xy-9y^2\)
\(=-5x^2-2xy-10y^2\)
4: =9x^2+6xy+y^2+x^2-2xy+y^2
=10x^2+4xy+2y^2
5: =-x^2-10x-25-x^2+6x-9
=-4x-34
7; \(=x^2-8xy+16y^2+x+4y\)
10: \(=4x^2+28x+49+4x^2+12x+9\)
=8x^2+40x+58
11: =-4x^2+4xy-y^2-x^2-6xy-9y^2
=-5x^2-2xy-10y^2
1)\(=\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{26^2}=\sqrt{5}-2+26=24-\sqrt{5}\)
2) \(=\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)
3) \(=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\left|x-1\right|}{x-1}\)\(=\left[{}\begin{matrix}1\left(x>1\right)\\-1\left(x< 1\right)\end{matrix}\right.\)
4) \(=\sqrt{\left(\sqrt{\dfrac{7}{2}}+\sqrt{\dfrac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\dfrac{7}{2}}-\sqrt{\dfrac{1}{2}}\right)^2}=\sqrt{\dfrac{7}{2}}+\sqrt{\dfrac{1}{2}}-\sqrt{\dfrac{7}{2}}+\sqrt{\dfrac{1}{2}}=2\sqrt{\dfrac{1}{2}}=\sqrt{2}\)
2. \(\dfrac{x^2-5}{x+\sqrt{5}}=\dfrac{x^2-\left(\sqrt{5}\right)^2}{x+\sqrt{5}}=\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)
3. \(\dfrac{\sqrt{x^2-2x+1}}{x-1}=\dfrac{\sqrt{x^2-2.x.1+1^2}}{x-1}=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{|x-1|}{x-1}=\left[{}\begin{matrix}x-1>0\left(x>1\right)\\x-1< 0\left(x< 1\right)\end{matrix}\right.=\left[{}\begin{matrix}=1\\=\dfrac{x+1}{x-1}\end{matrix}\right.\)