K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

minh muon chet qua troi!!!!!!

15 tháng 10 2016

mk chư học đến căn bấc 2

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\); \(\frac{a}{b} = \frac{c}{d} = \frac{{a + 2c}}{{b + 2d}}\)

Như vậy, \(\frac{{a - c}}{{b - d}} = \frac{{a + 2c}}{{b + 2d}}\) (đpcm)

13 tháng 12 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có

\(VT:\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{b^{2018}\cdot k^{2018}+d^{2018}\cdot k^{2018}}{b^{2018}+d^{2018}}=\frac{k^{2018}\left(b^{2018}+d^{2018}\right)}{b^{2018}+d^{2018}}=k^{2018}\)

\(VP:\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{\left(bk+dk\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{k^{2018}\cdot\left(b+d\right)^{2018}}{\left(b+d\right)^{2018}}=k^{2018}\)

\(\Rightarrow VT=VP\)

Hay \(\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\left(đpcm\right)\)

13 tháng 12 2019

Ủa cho tớ hỏi: VT , VP là j vậy?

23 tháng 11 2019

\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\left(\frac{a-b}{c-d}\right)^{2013}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)

18 tháng 2 2020

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=\)\(1\)

\(\hept{\begin{cases}\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\end{cases}}\\\frac{c}{d}=1\\\frac{d}{a}=1\end{cases}\Rightarrow\hept{\begin{cases}\hept{\begin{cases}a=b\\b=c\end{cases}}\\c=d\\d=a\end{cases}\Rightarrow}a=b=c=d}\)

18 tháng 2 2020

Rồi làm tiếp đi nhé

7 tháng 11 2019
https://i.imgur.com/z4bn8DU.jpg
7 tháng 11 2019

Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}.\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\Rightarrow\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1.\)

\(\Rightarrow\frac{a+b}{c+d}+\frac{c+d}{c+d}=\frac{b+c}{d+a}+\frac{d+a}{d+a}.\)

\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)

Nếu \(a+b+c+d\ne0.\)

\(\Rightarrow c+d=d+a\)

\(\Rightarrow c=a\left(đpcm1\right).\)

Nếu \(a+b+c+d=0\) thì hợp với đề.

\(\Rightarrow a+b+c+d=0\left(đpcm2\right).\)

Chúc bạn học tốt!

18 tháng 8 2020

đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\)

\(\Leftrightarrow a=bk;c=dk\)

\(\frac{a}{a-b}=\frac{bk}{bk-b}\)

\(=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)

\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

18 tháng 8 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

=>\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)

=> \(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)( đpcm )

6 tháng 9 2016

a/b=c/d
=> ad=bc
=>ac-ad=ac-bc
=>a(c-d)=c(a-b)
=> a/(a-b)=c/(c-d)