Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh BĐT sau luôn đúng: x > 0
x + \(\dfrac{4}{x}\) \(\ge\) 4
Áp dụng BĐT Cô si ta có: x > 0 => x + \(\dfrac{4}{x}\) \(\ge\) 2 . \(\sqrt{\dfrac{4x}{x}}\)
<=> x + \(\dfrac{4}{x}\) \(\ge\) 4
Ta có: \(x+\dfrac{4}{x}\ge4\)
\(\Leftrightarrow\dfrac{x^2+4}{x}-\dfrac{4x}{x}\ge0\)
\(\Leftrightarrow x^2-4x+4\ge0\forall x\)
\(\Leftrightarrow\left(x-2\right)^2\ge0\forall x>0\)(luôn đúng)
Áp dụng BĐT Cô si ta có: x > 0 => x + \(\dfrac{4}{x}\) \(\ge\) 2 . \(\sqrt{\dfrac{4x}{x}}\)
<=> x + \(\dfrac{4}{x}\) \(\ge\) 4
Ta có: \(x+\dfrac{4}{x}\ge4\)
\(\Leftrightarrow\dfrac{x^2+4}{x}-\dfrac{4x}{x}\ge0\)
\(\Leftrightarrow x^2-4x+4\ge0\forall x\)
\(\Leftrightarrow\left(x-2\right)^2\ge0\forall x>0\)(luôn đúng)