Cho \(N=\frac{\sqrt{x}}{\sqrt{x}+1}\)và \(H=\frac{x-4}{x+2\sqrt{x}}\)
so sánh N với H
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(x=81\Rightarrow\sqrt{x}=9\)
Thay \(\sqrt{x}=9\)vào biểu thức A ta được :
\(A=\frac{2}{9+1}=\frac{2}{10}=\frac{1}{5}\)
b, Ta có : \(P=\frac{B}{A}\)hay\(P=\frac{\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}+1}}{\frac{2}{\sqrt{x}+1}}\)
\(=\frac{1+\sqrt{x}}{x+\sqrt{x}}.\frac{\sqrt{x}+1}{2}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)
c, Ta có \(\frac{1}{2}=\frac{\sqrt{x}}{2\sqrt{x}}\)mà \(\sqrt{x}< \sqrt{x}+1\)
nên \(P>\frac{1}{2}\)
a) \(A=\frac{2}{\sqrt{x}+1}=\frac{2}{\sqrt{81}+1}=\frac{2}{9+1}=\frac{1}{5}\)
b) \(B=\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}+1}\)
\(=\frac{1+\sqrt{x}}{\left(1+\sqrt{x}\right)\sqrt{x}}=\frac{1}{\sqrt{x}}\)
\(\Rightarrow P=\frac{B}{A}=\frac{1}{\sqrt{x}}\div\frac{2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)
c) Ta có: \(P=\frac{\sqrt{x}+1}{2\sqrt{x}}=\frac{1}{2}+\frac{1}{\sqrt{x}}+\frac{1}{2}+0=\frac{1}{2}\)
=> P>1/2
\(ĐKXĐ:x\ne1;x\ne0\)
\(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{2x-2\sqrt{x}}{2x+2\sqrt{x}}\)
\(N=\frac{\sqrt{x}-3}{2\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)2\sqrt{x}}=\frac{x-2\sqrt{x}-3}{2x+2\sqrt{x}}\)
Ta có :
\(x\ge0>-3\)
\(\Leftrightarrow x>-3\)
\(\Leftrightarrow x+\left(x-2\sqrt{x}\right)>-3+\left(x-2\sqrt{x}\right)\)
\(\Leftrightarrow2x-2\sqrt{x}>x-2\sqrt{x}-3\)
\(\Leftrightarrow\frac{2x-2\sqrt{x}}{2x+2\sqrt{x}}>\frac{x-2\sqrt{x}-3}{2x+2\sqrt{x}}\)
\(\Leftrightarrow A>N\)
Ta có: \(P=\frac{\sqrt{x}-4}{\sqrt{x}}\times\frac{x+\sqrt{x}+1}{\sqrt{x}-4}\)
\(P=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)\(\left(ĐK:x>0\right)\)
Ta lấy \(P-2=\frac{x+\sqrt{x}+1}{\sqrt{x}}-2\)
\(=\frac{x+\sqrt{x}+1-2\sqrt{x}}{\sqrt{x}}\)
\(=\frac{x-\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{3}{4}}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}}{\sqrt{x}}\)
Vì \(x>0\Rightarrow\sqrt{x}>0\)
\(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\frac{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}}{\sqrt{x}}>0\)
\(\Rightarrow P-2>0\)
\(\Rightarrow P>2\)
Học tốt
1) Thay x=16 vào A ta có:
A=\(\frac{16+\sqrt{16}+1}{\sqrt{16}+2}\)
A=\(\frac{16+4+1}{4+2}\)
A=\(\frac{21}{6}=\frac{7}{2}\)
\(2,\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{x-\sqrt{x}}\)
\(=\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{2x-x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-\sqrt{x}+2\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}\)\(\left(đpcm\right)\)
\(3,P=A.B=\frac{x+\sqrt{x}+1}{\sqrt{x}+2}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)
Ta thấy \(\left(\sqrt{x}-1\right)^2>0\Rightarrow x-2\sqrt{x}+1>0\)
\(\Rightarrow x+\sqrt{x}+1>3\sqrt{x}\)
\(\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>\frac{3\sqrt{x}}{\sqrt{x}}\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>3\left(đpcm\right)\)
Ta có : \(\frac{\sqrt{x}}{\sqrt{x}+1}=\frac{\sqrt{x}+1-1}{\sqrt{x}+1}=1-\frac{1}{\sqrt{x}+1}\)
\(\frac{x-4}{x+2\sqrt{x}}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}}=1-\frac{2}{\sqrt{x}}\)
ta xét : \(\frac{2}{\sqrt{x}}\ge\frac{1}{\sqrt{x}+1}\)
\(\Rightarrow1-\frac{1}{\sqrt{x}+1}\ge1-\frac{2}{\sqrt{x}}\Leftrightarrow N\ge H\)
Ta có
N = \(\frac{\sqrt{x}}{\sqrt{x}+1}=1-\frac{1}{\sqrt{x}+1}\)
M = \(\frac{x-4}{x+2\sqrt{x}}=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}}\)
= \(1-\frac{2}{\sqrt{x}}\)
=> N - M = \(\frac{2}{\sqrt{x}}-\frac{1}{\sqrt{x}+1}=\frac{2\sqrt{x}+2-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}>0\)
Vậy N > M