cho hình thang vuông ABCD (A=D=90) DC=2AB.H là hình chiếu của D trên AC,M là trung điểm của HC.Chứng minh rằng MB vuông góc với MD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự vẽ nha
theo tính chất đường trung bình ta có: MI // CD và MI = 1/2 CD
mà CD = 2AB và CD // AB
nên MI = AB và MI // AB
=> ABMI là hình bình hành
=> AI // BM (1)
Mặt khác, xét tam giác ADM có
DH vuông AM và MI vuông AD
nên I là trực tâm tam giác ADM
=> AI vuông DM (2)
từ (1)(2) => BM vuông DM tức là góc BMD = 90 độ
Gọi N là trung điểm của HD .
Ta có : MN là đường trung bình của tam giác HDC
\(\Rightarrow MN//DC\)
\(MN=\frac{1}{2}DC\) (T/c đường TB )
Ta lại có :
\(AB//DC\)và \(AB=MN\)
=> ABMN là hình bình hành .
\(\Rightarrow AN//BM\)(1)
Xét tam giác ADM có :
\(\hept{\begin{cases}DH\perp AM\\MN\perp AD\end{cases}}\)
\(\Rightarrow AN\perp DM\)(2)
Từ (1) và (2)
\(\Rightarrow\widehat{BMD}=90^o\)(đpcm)
Xét ΔIAB và ΔICD có
góc IAB=góc ICD
goc AIB=góc CID
=>ΔIAB đồng dạng với ΔICD
=>IB/ID=AB/CD=BM/MC
=>IM//DC
=>IM vuông góc AD