Ai giúp t với ah
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: A=\(\left\{H,I,N,O,C\right\}\)
Bài 2: M=\(\left\{3,4,5,6\right\}\)
Bài 3: \(A=\left\{6,23\right\}\\ B=\left\{3,u,t\right\}\\ C=\left\{cua\right\}\)
D={cua,cá,ốc}
Xét ΔAHB vuông tại H có
\(AB=\dfrac{AH}{\sin30^0}=6:\dfrac{1}{2}=12\left(cm\right)\)
\(\Leftrightarrow AC=12\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=24\sqrt{3}\left(cm\right)\)
a/ Ta có: \(\Delta\) ABC cân tại A=> AB=AC
mà AC=10cm => AB=10cm
Ta có: AH là đường cao \(\Delta\) ABC => \(\Delta\) ABH vuông tại H
=> \(AH^2+BH^2=AB^2\) ( định lý Pytago)
dựa vào số liệu đầu bài và số liệu đã tính => BH=6cm
Ta có \(\Delta\) ABC cân, AH là đường cao => AH cũng là trung tuyến => H trung điểm BC
=> BH=CH=6cm
b/ Ta có: \(\Delta\) KAH vuông tại K => \(A_1+H_1=90^0=>H_1=90^o-A_1\left(1\right)\)
Ta có: \(\Delta\) ADH vuông tại D => \(A_2+H_2=90^o=>H_2=90^o-A_2\left(2\right)\)
Ta có: \(A_1=A_2\left(t.gABC\right)cân,AHlàđườngcaovàcũngsẽlàphângiác\left(\right)\) (3)
từ \(\left(1\right)\left(2\right)và\left(3\right)\) => \(H_1=H_2\)
Xét \(\Delta\) AKH và \(\Delta\) ADH có: \(\left\{{}\begin{matrix}A_1=A_2\\AHchung\\H_1=H_2\left(cmt\right)\end{matrix}\right.\)
=> \(\Delta\) AKH=\(\Delta\) ADH(g.c.g)
=> AK=AD
đổi:30 m=300cm
cạnh là :
300:4=75[cm]
chu vi sau khi mở rộng là :
[75+2]*4=308[cm]
đổi:308cm=3.08m