K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2016

ai giúp mk vs 

 

26 tháng 1 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: AH ⊥ BC, suy ra: HB = HC = BC/2 = 8 (cm)

Trong tam giác vuông ABH, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

15 tháng 9 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng định lí Pi-ta-go vào tam giác vuông ABH ta có:

A B 2 = A H 2 + B H 2 ⇒ A H 2 = A B 2 - B H 2 = 10 2 - 8 2 = 36

Suy ra: AH = 6 (cm)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: IH = AH – AI = 6 – 2 = 4 (cm)

Vì IH ⊥ BC và DC ⊥ BC nên IH // DC    (1)

Mặt khác: BH = HC (gt)     (2)

Từ (1) và (2) ta có IH là đường trung bình của tam giác BCD

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

3 tháng 7 2017

Xét \(\Delta\)ABC cân tại A có :

AH là đường cao

\(\Rightarrow\)AH là đường trung tuyến

\(\Rightarrow\)H là trung điểm của BC

\(\Rightarrow\)BH = HC =\(\dfrac{BC}{2}\)\(\dfrac{16}{2}=8\)

Xét \(\Delta\)AHB vuông tại H có:

\(\cos\)B=\(\dfrac{BH}{AB}=\dfrac{8}{10}\)=0.8

\(\Rightarrow\Lambda B\approx37\)độ

Ta có : góc B = góc C (Tam giác ABC cân tại A)

Mà góc B\(\approx37\)độ

\(\Rightarrow\)góc C\(\approx\)37 độ

b, Xét \(\Delta\)ABC có :

góc BAC+gócACB+góc ABC=180

\(\Rightarrow\)góc BAC=106 độ

Xét \(\Delta\)AHB vuông tại H có :

\(AB^2=AH^2+HB^2\Rightarrow AH=6\)

Ta có \(AI=\dfrac{1}{3}AH\Rightarrow HI=\dfrac{2}{3}AH\)

\(\Rightarrow\)HI=4cm

Xét tam giác BDC có

\(HI\) song song CD

\(\Rightarrow\dfrac{HI}{CD}=\dfrac{BH}{CH}=\dfrac{8}{16}=\dfrac{1}{2}\)

\(CD=8cm\)

Xét tứ giác AHCD có :

AH song somg CD

\(\Rightarrow\)AHCD là hình thang

Diện tích hình thang AHCD là :

\(\dfrac{1}{2}\left(6+8\right)\times8=56cm^2\)

Diện tích AHB là :

\(\dfrac{1}{2}\times6\times8=24cm^2\)

Diện tích tứ giác ABCD là

\(56+24=80cm^2\)

10 tháng 11 2017

bạn ơi chỗ tỉ lệ pải là \(\dfrac{HI}{CD}=\dfrac{BH}{BC}\)

5 tháng 4 2020

a) đặt AB=x=>AC=2x

áp dụng định lý Pitago zô tam giác zuông ABC

\(AB^2+AC^2=BC^2=>x^2+4x^2=25\)

\(=>5x^2=25=>x^2=5\)

=>\(x=\sqrt{5}\)

\(=>AB=\sqrt{5};AC=2\sqrt{5}\)

b) Ta có \(AH//CD\)( từ zuông góc đến song song ) 

=> AHCD là hình thang

Áp dụng HTL ta có

\(AH=\frac{AB.AC}{BC}=\frac{\sqrt{5}.2\sqrt{5}}{5}=2=>AI=\frac{1}{3}AH=\frac{1}{3}=>HI=\frac{2}{3}\)

Áp dụng đinh lý ta lét

\(\frac{HI}{CD}=\frac{BH}{BC}=\frac{\frac{AB^2}{BC}}{BC}=\frac{AB^2}{BC^2}=\frac{5}{25}=\frac{1}{5}=>CD=5HI=10\)

Ta có \(HC=\frac{AC^2}{BC}=\frac{\left(2\sqrt{5}\right)^2}{5^2}=\frac{4}{5}\)

zậy 

\(S_{AHCD}=\frac{1}{2}\left(AH+CD\right).HC=\frac{1}{2}\left(2+10\right).\frac{4}{5}=\frac{25}{4}\)

23 tháng 9 2022

AB =2AC mà .Sửa AB=x thànhAB=x, AC=2x thành AC=x

14 tháng 12 2021

\(AB^2+AC^2=BC^2=25\Rightarrow5AC^2=25\Leftrightarrow AC=\sqrt{5}\left(cm\right)\Rightarrow AB=2\sqrt{5}\left(cm\right)\)\(CH=\dfrac{AC^2}{BC}=1\left(cm\right)\Rightarrow BH=5-1=4\left(cm\right)\\ AH=\dfrac{AB.AC}{BC}=2\\ AI=\dfrac{1}{3}AH=\dfrac{2}{3};HI=\dfrac{2}{3}AH=\dfrac{4}{3}\\ CD\text{//}AH\Rightarrow CD\text{//}HI\Rightarrow\dfrac{HI}{CD}=\dfrac{BH}{BC}=\dfrac{4}{5}\\ \Rightarrow CD=\dfrac{5}{4}HI=\dfrac{5}{4}\cdot\dfrac{4}{3}=\dfrac{5}{3}\\ \Rightarrow S_{AHCD}=\dfrac{1}{2}\cdot HC\cdot\left(AH+CD\right)=\dfrac{1}{2}\cdot1\cdot\left(2+\dfrac{5}{3}\right)=\dfrac{11}{6}\left(cm^2\right)\left(AH\text{//}CD\text{ nên }AHCD\text{ là hình thang}\right)\)