Tìm số dư của 20032004 khi chia cho 2001
( cách làm )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là số cần tìm
Vì a chia 2001 dư 23 suy ra a = 2001p + 23(p thuộc N)
Vì a chia 2003 dư 32 suy ra a = 2003q + 32(q thuộc N)
Suy ra 2001p+23=2003q+32
2001p-2001q=2q+32-23
2001(p-q)=2q+9
Suy ra 2q+9 chia hết cho 2001
Mà a nhỏ nhất thì q nhỏ nhất
Nếu 2q+9=2001 suy ra q=996(chọn)
Với q=996 suy ra a=996 x 2003+32=1995020
Vậy số cần tìm là 1995020
Gọi a là số cần tìm
Vì a chia 2001 dư 23 suy ra a = 2001p + 23(p thuộc N)
Vì a chia 2003 dư 32 suy ra a = 2003q + 32(q thuộc N)
Suy ra 2001p+23=2003q+32
2001p-2001q=2q+32-23
2001(p-q)=2q+9
Suy ra 2q+9 chia hết cho 2001
Mà a nhỏ nhất thì q nhỏ nhất
Nếu 2q+9=2001 suy ra q=996(chọn)
Với q=996 suy ra a=996 x 2003+32=1995020
Vậy số cần tìm là 1995020
Gọi số cần tìm là a, a \(\in\) N*, a nhỏ nhất
Vì a : 2001 dư 23 \(\Rightarrow a=2001m+23\) (m,n \(\in\) N*)
a : 2003 dư 32 \(\Rightarrow a=2003n+32\)
\(\Rightarrow2001m+23=2003n+32\)
\(\Rightarrow2001m+23=2001n+2n+32\)
\(\Rightarrow2001m-2001n=2n+32-23\)
\(\Rightarrow2001\left(m-n\right)=2n+9\)
\(\Rightarrow2n+9⋮2001\)
Để a nhỏ nhất thì n nhỏ nhất \(\Rightarrow\) 2n+9 nhỏ nhất
Nếu \(2n+9=2001\Rightarrow n=996\) (chọn)
Với \(n=996\) thì \(a=2003.996+32=1995020\)
Vậy số cần tìm là 1995020.
Gọi số cần tìm là x , đăt A = x - 5
Ta có : x : 29 dư 5 => A chia hết 29
x : 31 dư 28 => A chia cho 31 dư 23 => A = 31 k + 23
cho k = 0,1,2,3 ....... ta thấy khi k = 3 thì A = 116 chia hết cho 29. Vậy x = A + 5 = 116 + 5 = 121
Giải:Ta có: 20012 ≡ 4 (mod 2003) ⇒ 200110 ≡ 1024 (mod 2003) ⇒ 200120 ≡ 1007 (mod 2003) ⇒ 200140 ≡ 10072 ≡ 531 (mod 2003) ⇒ 200140.200110 ≡ 1024.531≡ 931 (mod 2003) 200150 ≡ 931 (mod 2003) ⇒ 2001100 ≡ 9312 ≡ 1465 (mod 2003) ⇒ 2001200 ≡ 14652 ≡ 1012 (mod 2003) ⇒ 2001400 ≡ 10122 ≡ 611 (mod 2003) ⇒ 2001400 . 2001100 ≡ 611.1465 ≡ 1777 (mod 2003) 2001500 ≡1777 (mod 2003) ⇒ 20011000 ≡ 17772 ≡ 1001 (mod 2003) ⇒ 20012000 ≡ 10012 ≡ 501 (mod 2003) ⇒ 20012000 . 200110 ≡ 501.1024 ≡ 256 (mod 2003) 20012010 ≡256 (mod 2003)Vậy : 20012010 chia cho 2003 có số dư là 256
Ban goi so can tim la a.
Vi a chia cho 29 du 5 nen a co dang: a = 29k + 5 ( k la so tu nhien )
lai co a chia 31 du 28 nen a - 28 chia het cho 31
suy ra : 29k - 23 chia het cho 31
=> 31k -31 -2k +8 chia het cho 31
=> 2k - 8 chia het cho 31
=> k - 4 chia het cho 31
ma a nho nhat nen k nho nhat. Vay k =4 hay a= 29.4 + 5 =121
20032004 khi chia cho 2001 số dư là 1591