K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2016

20032004 khi chia cho 2001 số dư là 1591

15 tháng 2 2020

1/ Ta có: \(1999^{30}\equiv\left(1999^2\right)^{15}\equiv8^{15}\equiv\left(8^3\right)^5\equiv16^5\equiv1\left(mod31\right)\)

\(\Rightarrow\left(1999^{30}\right)^{66}\equiv1\left(mod31\right)\Leftrightarrow1999^{1980}\equiv1\left(mod31\right)\) (1)

Lại có: \(1999^{21}\equiv\left(1999^2\right)^{10}.1999\equiv8^{10}.15\equiv\left(8^5\right)^2.15\equiv15\left(mod31\right)\) (2)

Từ (1) và (2) \(\Rightarrow1999^{1980}.1999^{21}\equiv15\Leftrightarrow1999^{2001}\equiv15\left(mod31\right)\)

Hay \(1999^{2001}\) chia cho 31 có số dư là 15.

P/s: Cả năm nay không làm dạng này nên không chắc nha! Lục nghề mất r

15 tháng 2 2020

2) Khó đây, không chắc đâu. Mình thử dùng quy nạp:

Trước hết ta chứng minh nó với n = 1. Tức là chứng minh \(1924^{2003^{2004}}+1920⋮124\)

\(\Leftrightarrow1924^{2003^{2004}}+1920\equiv0\left(mod124\right)\)

Tách: 124 =4 . 31

Ta có: \(1924\equiv0\left(mod4\right)\Leftrightarrow1924^{2003^{2004}}\equiv0\left(mod4\right)\)

Lại có: \(1924^{30}\equiv1\left(mod31\right)\) (bạn tự chứng minh được mà:D)

Mà: \(2003^{2004}\equiv23^{2004}\equiv19^{1002}\equiv\left(19^2\right)^{501}\equiv1\left(mod30\right)\)

Đặt \(2003^{2004}=30k+1\). Do đó \(1924^{2003^{2004}}=1924^{30k+1}=\left(1924^{30}\right)^k.1924\equiv1.1924\equiv2\left(mod31\right)\)

\(\Rightarrow1924^{2003^{2004}}-2\equiv0\left(mod31\right)\)

\(\Rightarrow1924^{2003^{2004}}-2-31.2\equiv0\left(mod31\right)\)

\(\Rightarrow1924^{2003^{2004}}-64\equiv0\left(mod31\right)\)

\(1924^{2003^{2004}}-64\equiv0\left(mod4\right)\)

Suy ra \(1924^{2003^{2004}}-64\equiv0\left(mod4.31=124\right)\)

Do đó: \(1924^{2003^{2004}}+1920\equiv64+1920\equiv0\left(mod124\right)\)

Vậy nó đúng trong trường hợp n = 1. Ta giả sử nó đúng đến n = k.

Tức là: \(1924^{2003^{2004^k}}+1920⋮124\)

Ta đi chứng minh: \(1924^{2003^{2004^{k+1}}}+1920⋮124\)

Tới đây bí cmnr:(

1 tháng 8 2016

casio à bạn

1 tháng 8 2016

18^7​đồng dư 1079(mod 2003)( dấu đồng dư là 3 đấu bằng mà mik vt thành 2 dấu bằng  nha bạn )

18^14 =1079^2=498(mod 2003)

18^3=1826(mod 2003)

18^4*18^3=498*1826=1989(mod 2003)

vậy số dư là 1898

1 tháng 2 2018

Có : 3^2003 = (3^2001).3^2 = (3^3)^667.9 = 27^667 . 9

Áp dụng tính chất a^n-b^n chia hết cho a-b với a,b,n thuộc N sao thì :

27^667.9 - 9 = 9.(27^667-1) = 9.(27^667-1^667) chia hết cho 27-1 = 26

Mà 26 chia hết cho 13 => 27^667.9-9 chia hết cho 13

=> 3^2003-9 chia hết cho 13

=> 3^2003 chia 13 dư 9

Tk mk nha