C= ( 1+1/2)x(1+1/3)x(1+1/4)x...x ( 1+1/2013)
giải hộ mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
vì \(\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\ne0\Rightarrow x+2004=0\Rightarrow x=-2004\)
vậy x=-2004
a. /x-1/ + 2x = 4
<=> x -1 + 2x = 4 (vì x lớn hơn hoặc bằng 1)
<=> 3x = 4+1
<=> 3x = 5
<=> x = 5/3
a: Ta có: \(3\sqrt{5a}-\sqrt{20a}+\sqrt{45a}\)
\(=3\sqrt{5a}-2\sqrt{5a}+3\sqrt{5a}\)
\(=4\sqrt{5a}\)
b: Ta có: \(\sqrt{160a^2}+\dfrac{1}{2}\sqrt{40a^2}-3\sqrt{90a^2}\)
\(=4a\sqrt{10}+\dfrac{1}{2}\cdot2a\sqrt{10}-3\cdot3a\sqrt{10}\)
\(=-4a\sqrt{10}\)
c: Ta có: \(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}\)
\(=\left|x-1\right|-\left|x-2\right|\)
\(x\) \(\times\) \(\dfrac{1}{2}\) = 1 - \(\dfrac{1}{3}\)
\(x\) \(\times\)\(\dfrac{1}{2}\) = \(\dfrac{2}{3}\)
\(x\) = \(\dfrac{2}{3}\) : \(\dfrac{1}{2}\)
\(x\) = \(\dfrac{4}{3}\)
(x-1)/2015 + x/2014 + 1/503 - (x-3)/2013 - x/2012 - 1/1007 =0
(x-2016)/2015 + (x-2016)/2014 - (x-2016)/2012 - (x-2016)/2013 = 0
(x-2016) ( 1/2015 + 1/2016 - 1/2013 - 1/2012) = 0
Mà 1/2015 + 1/2016 - 1/2013 - 1/2012 khác 0
Suy ra x -2016=0
x=2016
Chỗ nào thắc mắc nhớ hỏi mik nhe!
\(C=\left(\dfrac{2}{2}+\dfrac{1}{3}\right)\times\left(\dfrac{3}{3}+\dfrac{1}{3}\right)\times\left(\dfrac{4}{4}+\dfrac{1}{4}\right)\times...\times\left(\dfrac{2013}{2013}+\dfrac{1}{2013}\right)\)
\(C=\dfrac{3}{2}\times\dfrac{4}{3}\times\dfrac{5}{4}\times....\times\dfrac{2014}{2013}\)
\(C=\dfrac{2014}{2}=1007\)
`C = (2/2 + 1/3) xx (3/3 + 1/3) xx (4/4 + 1/4) xx ... xx (2013/2013 + 1/2013)`
`C = 3/2 xx 4/3 xx 5/4 xx ... xx 2014/2013`
`C = 2014/2 = 1007`
Vậy `C = 1007`