Tìm số dư của A khi chia cho 7
A=1+2+22+23+...+2010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=1+2+2^2+...+2^{41}\)
=>\(2A=2+2^2+2^3+...+2^{42}\)
=>\(2A-A=2^{42}-1\)
=>\(A=2^{42}-1\)
b: \(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{40}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{40}\right)⋮3\)
\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{39}\left(1+2+2^2\right)\)
\(=7\left(1+2^3+...+2^{39}\right)⋮7\)
\(1+2005+2005^2+...+2005^{2009}\)(1)
\(=\left(1+2005\right)+\left(2005^2+2005^3\right)+...+\left(2005^{2008}+2005^{2009}\right)\)
\(=2006+2005^2.\left(1+2005\right)+...+2005^{2008}.\left(1+2005\right)\)
\(=2006.\left(2005^0+2005^2+...+2005^{2008}\right)⋮2006\)
\(\left(1\right)=\frac{2005^{2010}-1}{2004}\Rightarrow2005^{2010}:2006\text{ dư 1}\)(bn tự tính)
\(A=1+2+2^2+2^3+...+2^{100}\)
\(=1+\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(=1+2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(=1+3\left(2+2^3+...+2^{99}\right)\)
=>A chia 3 dư 1
Ta có A=20+21+22+23+...2100
2A=21+22+...+2101
2A-A=(21+22+...+2100)-(20+21+...+2100)
A=2101-1
Mà 2101-1=(........02)-1=........01 chia 100 dư 1
Chúc bạn học tốt.
1. Bạn xem lại, hạng tử cuối là $2^{2010}$ hay $2^{2011}$
2.
Vì $x\vdots 4$ nên $x=4k$ với $k$ nguyên.
Ta có: $2010< x< 2025$
$\Rightarrow 2010< 4k< 2025$
$\Rightarrow 502,5< k< 506,25$
$\Rightarrow k\in \left\{503; 504; 505; 506\right\}$
$\Rightarrow x\in \left\{2012; 2016; 2020; 2024\right\}$