chứng tỏ rằng : a=10! + 1.3.5...9 chia hết cho 5
chứng tỏ rằng : b=10! + 1.3.5...9 + 2009 chia hết cho 2
chứng tỏ rằng : c= 17^17 + 13^13 chia hết cho 2 và 5
chứng tỏ rằng : d= 17^17 - 13^13 chia hết cho 2 nhưng ko chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(17^{17}-13^{13}=17^{4.4}.17-13^{4.3}.13=\left(...1\right).17-\left(...1\right).13\)
\(=\left(...7\right)-\left(...3\right)=\left(...4\right)\)
Số có tận cùng là 4 chia hết cho 2 nhưng ko chia hết cho 5
1717= 1716.17= (174)4.17=835214.17
Vì 835314 có chữ số tận cùng là 1
=> 835214.17 có tận cùng là 7
1313=1312.13=(134)3.13=285613.13
Vi 285613 có chữ số tận cùng là 1
=> 285613.13 có chữ số tận cùng là 3
=> 1717-1313 có chữ số tận cùng là 4
=>1717-1313 chia hết cho 2 nhưng không chia hết cho 5
1) Gọi số cần tìm là A(A thuộc N)
Vì A chia 4 dư 3, ... nên A + 8 chia hết cho 4, 17, 19.
=> A + 8 chia hết cho 1292 (ƯCLN(4; 17; 19) = 1)
Số dư của A khi chia cho 1292 là:
1292 - 8 = 1284
Vậy A chia 1292 dư 1284.
2) Vì 2a - 3b chia hết cho 13 nên 4(2a - 3b) chia hết cho 13.
Xét tổng:
4(2a - 3b) - (8a - b)
= 8a - 12b - 8a + b
= (12b + b) - (8a - 8a)
= 13b chia hết cho 13.
Mà 4(2a -3b) chia hết cho 13 nên 8a - b chia hết cho 13(ĐPCM)
Tick ủng hộ mình nha