Cho tổng :
S=1+2+22+23+........+210+211
Chứng tỏ :S chia hết cho 3;7 và 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì tổng của S chia hết cho 3 nên S chia hết cho 3. có thế cũng hỏi =))
Chúc bạn an toàn
\(S=\left(1+2\right)+...+2^6\left(1+2\right)=3\left(1+...+2^6\right)⋮3\)
\(S=1+2+2^2+2^3+2^4+...+2^{2011}\)
\(\Rightarrow S=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{2009}\left(1+2+2^2\right)\)
\(\Rightarrow S=7+2^3.7+...+2^{2009}.7\)
\(\Rightarrow S=7\left(1+2^3+...+2^{2009}\right)⋮7\)
\(\Rightarrow dpcm\)
\(S=1+2+2^2+2^3+...+2^{59}\)
\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{58}+2^{59}\right)\)
\(S=3+2^2\cdot3+...+2^{58}\cdot3\)
\(S=3\cdot\left(1+2^2+...+2^{58}\right)\)
S chia hết cho 3
_____
\(S=1+2+2^2+...+2^{59}\)
\(S=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{57}+2^{58}+2^{59}\right)\)
\(S=7+7\cdot2^3+...+7\cdot2^{57}\)
\(S=7\cdot\left(1+2^3+...+2^{57}\right)\)
S chia hết cho 7
_____
\(S=1+2+2^2+2^3+...+2^{59}\)
\(S=\left(1+2+2^2+2^3\right)+\left(2^4+2^5+2^6+2^7\right)+...+\left(2^{56}+2^{57}+2^{58}+2^{59}\right)\)
\(S=15+2^4\cdot15+...+2^{56}\cdot15\)
\(S=15\cdot\left(1+2^4+...+2^{56}\right)\)
S chia hết cho 15
S = (1+ 2)+(22 + 23 )+( 24 + 27) + (26 + 25)
S= 3+45+51+51
S=3+3.15+3.17+3.17
S=3.(1+15+17.2): hết 3
tick nha nhanh nhất nè
\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{95}+2^{96}\right)\\ S=\left(1+2\right)\left(2+2^3+...+2^{95}\right)\\ S=3\left(2+2^3+...+2^{95}\right)⋮3\left(1\right)\\ S=\left(2+2^2\right)+2^3\left(1+2^2+...+2^{93}\right)\\ S=8+8\left(1+2^2+...+2^{93}\right)⋮8\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow S⋮24\)
Câu 13
S = 1 + 2 + 2² + ... + 2¹⁰
2S = 2 + 2² + 2³ + ... + 2¹¹
S = 2S - S
= (2 + 2² + 2³ + ... + 2¹¹) - (1 + 2 + 2² + ... + 2¹⁰)
= 2¹¹ - 1
= 2048 - 1
= 2047
Câu 14
3n + 2 = 3n - 6 + 8 = 3(n - 2) + 8
Để (3n + 2) ⋮ (n - 2) thì 8 ⋮ (n - 2)
⇒ n - 2 ∈ Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
⇒ n ∈ {-6; -2; 0; 1; 3; 4; 6; 10}
Mà n là số tự nhiên
⇒ n ∈ {0; 1; 3; 4; 6; 10}
Lời giải:
$A=(1+2)+(2^2+2^3)+....+(2^{2020}+2^{2021})$
$=3+2^2(1+2)+....+2^{2020}(1+2)$
$=3+3.2^2+....+3.2^{2020}$
$=3(1+2^2+....+2^{2020})\vdots 3$
Ta có đpcm.