Với \(x-y=1\), giá trị của biểu thức \(x^3-y^3-3xy\) bằng .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+y=1 => (x+y)^3=1 <=> x^3+3x^2y+3xy^2+y^3=1
<=> x^3+y^3+3xy(x+y)=1
<=> x^3+y^3+3xy=1 Do x+y=1
a)\(\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)=x^3+y^3+3xy=1^3=1\)
b)\(\left(x-y\right)^3=x^3-y^3-3xy\left(x-y\right)=x^3-y^3-3xy=1^3=1\)
Bài này là trên vio mk cx gặp r
x3+y3+3xy
= (x+y) ( x2-xy+y2) + 3xy
= 1 .( x2-xy+y2)+ 3xy
= x2-xy+y2+3xy
= x2+2xy+y2
=( x+y )2
= 12
=1
lik e nha
b; 13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\).y + 3\(xy^2\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\))
1 = \(x^3\) - y3 - 3\(xy\)
Phan Văn Hiếu Bài của bạn ngay từ dòng đầu đã sai hướng làm rồi nhé :)
Ta có :
\(x^3+y^3+3xy\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)+3xy-3x^2y-3xy^2\)
\(=\left(x+y\right)^3-3xy\left(x+y-1\right)\)
Thay \(x+y=1;\) có :
\(=1^3-3xy\left(1-1\right)\)
\(=1-0\)
\(=1\)
Vậy ...
\(x^3+y^3+3xy=\left(x+y\right)\left(x^2+xy+y^2\right)+3xy\)
\(=x^2+2xy+y^2+2xy\)
\(=2xy\)
đế đây mk chịu
ta có : x3 + y3 + 3xy = (x+y)(x2 -xy +y2) +3xy =x2-xy+y2+3xy= (x+y)2=1
Ta có
\(\left(x+x\right)^3=x^3+3x^2y+3xy^2+y^3=x^3+y^3+3xy\left(x+y\right)\)
\(\Rightarrow x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(\Rightarrow K=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\) Với x+y=1
\(\Rightarrow K=1^3-3xy+3xy=1\)
Có: \(x-y=1\)
\(x^3-y^3-3xy\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy\)
\(=x^2-2xy+y^2\)
\(=\left(x-y\right)^2\)
\(=1\)