K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC vuông tại A

b: góc B=2/3*90=60 độ

góc C=90-60=30 độ

Xét ΔABD có

AH vừa là đường cao, vừa là trung tuyến

góc B=60 độ

=>ΔABD đều

=>góc DAB=60 độ

=>góc DAC=góc DCA

=>DA=DC

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

góc ADH=góc CDE

=>ΔDHA=ΔDEC

=>DH=DE

 

2 tháng 4 2022

...

2 tháng 5 2022

có ai bt ko giúp vs ạ

 

 

20 tháng 11 2023

a: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}+30^0=90^0\)

=>\(\widehat{ABC}=60^0\)

Xét ΔABD có

AH là đường cao

AH là đường trung tuyến

Do đó: ΔABD cân tại A

Xét ΔABD cân tại A có \(\widehat{B}=60^0\)

nên ΔABD đều

b: ΔABD đều

=>\(\widehat{BAD}=60^0\)

\(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)

=>\(\widehat{CAD}+60^0=90^0\)

=>\(\widehat{CAD}=30^0\)

Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)

nên ΔDAC cân tại D

=>DA=DC

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

\(\widehat{HDA}=\widehat{EDC}\)

Do đó: ΔDHA=ΔDEC

=>DE=DH

Xét ΔDEH và ΔDAC có

\(\dfrac{DE}{DA}=\dfrac{DH}{DC}\)(DE=DH; DA=DC)

\(\widehat{EDH}=\widehat{ADC}\)

Do đó: ΔDEH đồng dạng với ΔDAC

=>\(\widehat{DEH}=\widehat{DAC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên EH//AC

a)Xét ∆ vuông ABH và ∆ADH có : 

AH chung 

BH = HD 

=> ∆ABH =∆ADH (2 cạnh góc vuông) 

b) Xét ∆ABD ta có : 

AH \(\perp\)BC 

BH = HD 

=> AH là trung trực 

=> ∆ABD cân tại A 

=> AB = AD 

ABD = ADB 

AH là phân giác BAD 

=> BAH = DAH 

Mà ADB = EDC ( đối đỉnh) 

Xét ∆ ABH có : 

ABH + BHA + BAH = 180° 

=> BAH = 90° - ABH (1)

Xét ∆ DEC có : 

DEC + ECD + CDE = 180° 

=>  EDC = 90° - EDC (2)

Mà EDC = BDA (cmt)

=> EDC = BDA = ABD (3)

Từ (1) (2) (3) => BAH = ECD (dpcm)

c) Xét ∆ABC có 

BAC + ACB + ABC = 180° 

=> ACB = 90° - ABC 

Mà ECD = ABC (cmt)

=> ECD = BCA 

Hay CB là phân giác ECA 

a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có

AH chung

HB=HD

=>ΔAHB=ΔAHD
b: Xét ΔABD có AB=AD và góc B=60 độ

nên ΔABD đều

 

a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có

AH chung

HB=HD

=>ΔAHB=ΔAHD

=>AB=AD

b: Xét ΔABD có

AB=AD

góc B=60 độ

=>ΔABD đều

c: Xét ΔDAC có góc DAC=góc DCA=30 độ

nên ΔDAC cân tại D

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

góc ADH=góc CDE
=>ΔDHA=ΔDEC
=>AH=EC

d: Xét ΔCIA có

CH,AE là đường cao

CH cắt AE tại D

=>D là trực tâm

=>ID vuông góc AC

mà DF vuông góc AC

nên I,D,F thẳng hàng

a:

a: Xet ΔAHB vuông tại H và ΔAHD vuông tại H có

AH chung

HB=HD

=>ΔAHB=ΔAHD

b: Xét ΔABD có

AB=AD

góc B=60 độ

=>ΔABD đều

c: Xét ΔDAC có góc DAC=góc DCA

nên ΔDAC cân tại D

=>DA=DC

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

góc HDA=góc EDC

=>ΔDHA=ΔDEC

=>DH=DE