2011x2013 và 20122
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^{32}-1\right)< 3^{32}-1=B\)
b) \(A=2011.2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1< 2012^2=B\)
\(A=\left(2012-1\right)\left(2012+1\right)-2012^2=2012^2-1-2012^2=-1\)
\(A=\left(2012-1\right)\left(2012+1\right)-2012^2=2012^2-1-2012^2=-1\)
[(23 - 5) . (-3)+9] . (22012 . 2011 - 20122 . 2011+1)
= [ 3 . ( -3 ) + 9] . (22012 . 2011 - 20122 . 2011+1)
= [ (-9) + 9 ] . (22012 . 2011 - 20122 . 2011+1)
= 0 . (22012 . 2011 - 20122 . 2011+1)
= 0
\(\dfrac{1}{2001.2003}+\dfrac{1}{2003.2005}+...+\dfrac{1}{2011.2013}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{2001.2003}+\dfrac{1}{2003.2005}+...+\dfrac{1}{2011.2013}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2001}-\dfrac{1}{2003}+\dfrac{1}{2003}-\dfrac{1}{2005}+...+\dfrac{1}{2011}-\dfrac{1}{2013}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2001}-\dfrac{1}{2013}\right)=\dfrac{2}{1342671}\)
=1/2.(2/2001.2003+2/2003.2005+.....+2/2011.2013)
=1/2(1/2001-1/2003+1/2003-1/2005+....+1/2011-1/2013)
=1/2(1/2001-1/2013)
=2/1342671
\(A=\frac{2012\times2013-1}{2011\times2013+2012}\)
\(A=\frac{2012\times2013-1}{2011\times2013+2011+1}\)
\(A=\frac{2012\times2013-1}{2013\times\left(2011+1\right)+1}\)
\(A=\frac{2012\times2013-1}{2013\times2012+1}\)
\(A=\frac{2012\times2013+1-2}{2012\times2013+1}\)
\(A=1-\frac{2}{2012\times2013+1}\)
Tính tử số 2012x2013-1=2011x2013+2013-1=2011x2013+2012
Do tử=mẫu =2011x2013=2012
Suy ra: A=1
Trả lời
2012.2013-1/2011.2013+2012
=2011.2013+2012-1/2011.2013+2012
=-1/1
=-1.
Học tốt !
- Số được giảm 100 lần là: 20122 - 100 = 20022
- Tổng của 2 số trên là: 20122 + 20022 = 40144
\(A=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2011.2013}\right)\)
\(A=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{4048144}{2011.2013}\)
\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2012.2012}{2011.2013}\)
\(A=\frac{2.3.4...2012}{1.2.3...2011}.\frac{2.3.4...2012}{3.4.5...2013}\)
\(A=2012.\frac{2}{2013}=\frac{4024}{2013}\)
Ta có :
\(A=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right).................\left(1+\dfrac{1}{2011.2013}\right)\)
\(A=\left(\dfrac{3}{3}+\dfrac{1}{3}\right)\left(\dfrac{8}{8}+\dfrac{1}{8}\right)................\left(\dfrac{9999}{9999}+\dfrac{1}{9999}\right)\)
\(A=\dfrac{4}{3}.\dfrac{9}{8}...............\dfrac{10000}{9999}\)
\(A=\dfrac{4.9.................10000}{3.8.............9999}\)
\(A=\dfrac{2.2.3.3................100.100}{1.3.2.4...............99.101}\)
\(A=\dfrac{2.100}{101}=\dfrac{200}{101}\)
~ Chúc bn học tốt ~
ta có
(2011+1)+(2013-1)
=(2012-1)
vì (2012-1)<20122
=>2011x2013<20122
Ta có :
2011 . 2013
= 2011 . ( 2012 + 1 )
= 2011 . 2012 + 2011 . 1
20122
= 2012 . 2012
= ( 2011 + 1 ) . 2012
= 2011 . 2012 + 2012 . 1
Ta thấy : 2011 . 1 < 2012 . 1 nên 2011 . 2012 + 2011 . 1 < 2011 . 2012 + 2012 . 1
Vậy : 2011 . 2013 < 20122