Cho đa thức
A (x) = 3x5- 4x3 + 2x2 - 3
B (x) = 8x4 - x3 - 9x + 2/5
Tính A(x) + B(x) ; A(x) - B(x) ; B(x) - A(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thu gọn và sắp xếp:
\(P\left(x\right)=2x^3-9x^2+5-4x^3+7x\)
\(P\left(x\right)=\left(2x^3-4x^3\right)-\left(9x^2+2x^2\right)+7x+5\)
\(P\left(x\right)=-2x^3-11x^2+7x+5\)
b) Thay x=1 vào đa thức P(x) ta được:
\(P\left(x\right)=\left(-1\right)^4-\left(-1\right)^3-\left(-1\right)-2=1\)
a, \(M+N=2x^2+x^2-2xy-2xy-3y^2+3y^2+1-1=3x^2-4xy\)
\(M-N=2x^2-x^2-2xy+2xy-3y^2-3y^2+1+1=x^2-6y^2+2\)
b, \(P\left(x\right)+Q\left(x\right)=x^3-4x^3+2x^2-6x+x+2-5=-3x^3+2x^2-5x-3\)
\(P\left(x\right)-Q\left(x\right)=x^3+4x^3-2x^2-6x-x+2+5=5x^3-2x^2-7x+7\)
a) Ta có: \(B\left(x\right)=-2x^3+2x^2+12+5x^2-9x\)
\(=-2x^3+7x^2-9x+12\)
b) Ta có: A(x)+B(x)
\(=4x^3-7x^2+3x-12-2x^3+7x^2-9x+12\)
\(=2x^3-6x\)
b) Ta có: A(x)-B(x)
\(=4x^3-7x^2+3x-12+2x^3-7x^2+9x-12\)
\(=6x^3-14x^2+12x-24\)
Bài 2
P(x) + Q(x) = x3 – 6x + 2 + 2x2 - 4x3 + x - 5 = - 3x3 + 2x2 – 5x - 3
P(x) - Q(x) = x3 – 6x + 2 - 2x2 + 4x3 - x + 5 = 5x3 − 2x2 − 7x+7
\(A\left(x\right)+B\left(x\right)-C\left(x\right)\)
\(=\left(-7+2x^2+x^4+3x^5-x^3\right)+\left(-x+x^4+2x^3-7\right)-\left(2x-x^4-3x^3\right)\)
\(=3x^5+3x^4+4x^3+2x^2-3x-14\)
a) \(P\left(x\right)=3x^3-x^2-2x^4+3+2x^3+x+3x^4-x^2-2x^4+3+2x^3+x+3x^4\)
\(=2x^4+7x^3-2x^2+2x+6\)
\(Q\left(x\right)=-x^4+x^2-4x^3-2+2x^2-x-x^3-x^4+x^2-4x^3-2+2x^2-x-x^3\)
\(=-2x^4-10x^3+6x^2-2x-4\)
b) \(P\left(x\right)+Q\left(x\right)=2x^4+7x^3-2x^2+2x+6-2x^4-10x^3+6x^2-2x-4\)
\(=-3x^3+4x^2+2\)
Bài 2:
a: \(\left(x-8\right)\left(x^3+8\right)=0\)
=>\(\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b: \(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
=>\(4x-3-x-5=30-3x\)
=>3x-8=30-3x
=>6x=38
=>\(x=\dfrac{38}{6}=\dfrac{19}{3}\)
Bài 6:
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
b: Ta có: HB=HC
H nằm giữa B và C
Do đó: H là trung điểm của BC
=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)
ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=5^2-4^2=9\)
=>\(AH=\sqrt{9}=3\left(cm\right)\)
c: Ta có: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H
d: Ta có: HD=HE
HE<HC(ΔHEC vuông tại E)
Do đó:HD<HC
\(A\left(x\right)+B\left(x\right)=\left(3x^5-4x^3+2x^2-3\right)+\left(8x^4-x^3-9x+\dfrac{2}{5}\right)\)
\(=3x^5+8x^4+\left(-4x^3-x^3\right)+2x^2-9x+\left(-3+\dfrac{2}{5}\right)\)
\(=3x^5+8x^4-5x^3+2x^2-9x-\dfrac{13}{5}\)
\(A\left(x\right)-B\left(x\right)=\left(3x^5-4x^3+2x^2-3\right)-\left(8x^4-x^3-9x+\dfrac{2}{5}\right)\)
\(=3x^5-8x^4+\left(-4x^3+x^3\right)+2x^2+9x+\left(-3-\dfrac{2}{5}\right)\)
\(=3x^5-8x^4-3x^3+2x^2+9x-\dfrac{17}{5}\)
\(B\left(x\right)-A\left(x\right)=\left(8x^4-x^3-9x+\dfrac{2}{5}\right)-\left(3x^5-4x^3+2x^2-3\right)\)
\(=-3x^5+8x^4+\left(-x^3+4x^3\right)-2x^2-9x+\left(\dfrac{2}{5}+3\right)\)
\(=-3x^5+8x^4+3x^3-2x^2-9x+\dfrac{17}{5}\)