CMR: Với mọi STN n thì n2+n+6 ko chia hết cho 5
bn nào muốn đc tk thì nhanh lên
sẽ đc tk 3 tk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1x59y chia hết cho 3 và 5
Vậy y có thể là 0 hoặc 5
Ta có 2 TH:
TH1: y = 0
\(\Rightarrow\)1x590 \(⋮\)3
\(\Rightarrow\)( 1 + x + 5 + 9 + 0 ) \(⋮\)3 = 15 + x \(⋮\)3
Vậy x \(\in\left\{0;3;6;9\right\}\)
TH2: y = 5
\(\Rightarrow\)1x595 \(⋮\)3
\(\Rightarrow\)( 1 + x + 5 + 9 + 5 ) \(⋮\)3 = 20 + x \(⋮\)3
Vậy x \(\in\left\{1;4;7\right\}\)
\(\Rightarrow x\in\left\{0;1;3;4;6;7;9\right\}\); y \(\in\left\{0;5\right\}\)
n+6 chia hết cho 2n-1 => 2(n+6) chia hết cho 2n-1 => 2n+12 chia hết cho 2n-1, 2n-1 chia hết cho 2n-1
=> (2n+12) - (2n-1) chi hết cho 2n-1 => 2n + 12 - 2n + 1 chi hết cho 2n-1
=> 13 chia hết cho 2n-1 => 2n-1 thuộc Ư(13) = {1 ; 13} mà 2n-1 là số lẻ
=> 2n-1 = 1
2n = 1+1
2n = 2
n = 2 : 2
n = 1
Vậy n = 1
Ta có n3 - n=n( n2-1)=(n-1)n(n+1)
Mà tích ba số tự nhiên liên tiếp nên chia hết cho 2 và 3 => chia hết cho 6
A = n3 – n (có nhân tử chung n)
= n(n2 – 1) (Xuất hiện HĐT (3))
= n(n – 1)(n + 1)
n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên
+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2
+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3
Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.
-Chanh-
Giả sử [(1+2+3+.......+n)-7] chia hết cho 10
=>[(1+2+3+.......+n)-7= \(\frac{n.\left(n+1\right)}{2}\)- 7 \(⋮\)10
=> \(\frac{n.\left(n+1\right)}{2}\)có tận cùng là 7
Nhưng \(\frac{n.\left(n+1\right)}{2}\)chỉ có tận cùng là : 5 ; 2 ; 3 ; 4 ; 0 , không có tận cùng là 7 nên giả thiết trên là sai
Vậy [ ( 1 + 2 + 3 + ... + n ) - 7 ] không chia hết cho 10 với mọi n thuộc N
mk tk cho bn ấy rồi , nhưng sao bn lại muốn mọi người tk cho bn ấy ?
Ta có: n2 + n = n(n + 1)
Do: n là STN => n và n + 1 là 2 STN liên tiếp => n(n + 1) có tận cùng là 0 ; 2 ; 6
Khi n(n + 1) có tận cùng là 0 => n(n + 1) + 6 có tận cùng là 6 không chia hết cho 5 (1)
Khi n(n + 1) có tận cùng là 2 => n(n + 1) + 6 có tận cùng là 8 không chia hết cho 5 (2)
Khi n(n + 1) có tận cùng là 6 => n(n + 1) + 6 có tận cùng là 2 không chia hết cho 5 (3)
Từ (1);(2);(3) ta được: n(n + 1) + 6 không chia hết cho 5 <=> n2 + n + 6 không chia hết cho 5.