cứu em chỉ cần ghi giả thuyết và kết luận thui =))
cho tam giác ABC cân tại A vẽ AH vuông góc với BC tại H
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GT ∆ABC cân tại A, AH BC
KL AHB = AHC
Xét hai tam giác vuông: ∆AHB và ∆AHC có:
AH chung
AB = AC (∆ABC cân tại A)
⇒ ∆AHB = ∆AHC (cạnh huyền - cạnh góc vuông)
Có `AH⊥BC(GT)=>hat(H_1)=hat(H_2)(=90^0`
`Delta ABC` cân tại `A=>AB=AC`
Xét `Delta AHB` và `Delta AHC` có :
`{:(hat(H_1)=hat(H_2)(=90^0)),(AB=AC(cmt)),(AH-chung):}}`
`=>Delta AHB=Delta AHC(ch-cgv)(đpcm)`
GT: \(\Delta ABC\) nhọn
\(\Delta ABD\)vuông cân tại A
\(\Delta ACE\)vuông cân tại A
\(ÀH\perp BC\), \(AH\)cắt \(DE\)tại M
KL: a) \(\Delta ABD=\Delta ACD\)
b) \(DC\perp BE\)
c) M trung điểm DE
vì dùng máy tính nên ko vẽ hình đc thông cảm !!
a) giả thiết
Δ ABC cân tại A
AK là tia đối của AB
BK=BC
KH⊥BC(H∈BC)
KH cắt AC tại E
Kết luận
KH=AC
BE là tia phân giác của góc ABC
b) xét tam giác BAC và tam giác BHK có
\(\widehat{B} \) Chung
KH=BC (gt)
\(\widehat{BAC}=\widehat{BHK}=90\) (gt)
tam giác BAC = tam giác BHK (ch-gn)
=>KH=AC(2 góc tương ứng )
b)Xét Δ KBC có BK=BC(gt)
=> tam giác KBC cân tại B
Mà KH⊥BC=> KH là đường cao
AC⊥AB =>AC⊥KB(K∈AB)=>AC là đường cao
Mà AC giao vs KH tại E
=> E là trực tâm của tam giác
=> BE là đường cao (tc 3 đg cao trong tam giác)
=> BE là giân giác của góc \(\widehat{KBC}\)
=>BE là giân giác của góc \(\widehat{ABC} \) (A∈BK)
GT: ΔABC; ^C=32
AH\(\perp\)BC (H\(\in\)BC) ; ^HAD=^CAD(D\(\in\)BC)
KL: ^ADH=?
Bài Làm
Xét ΔAHC vuông tại H(gt)
=> ^HAC+^C=90
=>^HAC=90-^C=90 - 32 =58
Vì AD là tia pg của ^HAC
=> A1=A2=1/2 ^HAC =1/2 .58 =29
Xét ΔAHD vuông tại H(gt)
=> A1+^ADH=90
=>^ADH=90 - ^A1 =90-29=61
em cảm ơn nha, nãy e vào trang cá nhân chj, em thấy 12 p tưởng chj off nên k hỏi^^
a/
Ta có
\(DN\perp HA\left(gt\right);BC\perp HA\left(gt\right)\) => DN//BC
\(\Rightarrow\widehat{NDB}+\widehat{CBD}=180^o\) (Hai góc trong cùng phía bù nhau)
\(\Rightarrow\widehat{NDA}+\widehat{ADB}+\widehat{ABD}+\widehat{ABC}=180^o\)
Ta có
tg ABD vuông cân tại A \(\Rightarrow\widehat{ADB}=\widehat{ABD}=45^o\Rightarrow\widehat{ADB}+\widehat{ABD}=90^o\)
\(\Rightarrow\widehat{NDA}+\widehat{ABC}=180^o-90^o=90^o\)
Xét tg vuông ABH
\(\widehat{BAH}+\widehat{ABC}=90^o\)
\(\Rightarrow\widehat{NDA}=\widehat{BAH}\)
Xét tg vuông NDA và tg vuông BAH có
\(\widehat{NDA}=\widehat{BAH}\left(cmt\right)\)
AD=AB (cạnh bên tg cân)
=> tg NDA = tg BAH (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
=> DN = AH
C/m tương tự ta cũng có tg vuông MAE = tg vuông CHA => EM=AH
b/
Ta có
\(DN\perp HA\left(gt\right);EM\perp HA\left(gt\right)\) => DN//EM
Xét tg vuông DIN và tg vuông EIM có
DN=EM (cùng bằng AH)
\(\widehat{IDN}=\widehat{IEM}\) (góc so le trong)
=> tg DIN = tg EIM (Hai tg vuông có 1 cạnh góc vuông và góc nhọn tương ứng bằng nhau)
=> DI=IE
a) Xét \(\Delta AHB\)và \(\Delta DBH\)có:
AH = BD(gt)
\(\widehat{AHB}=\widehat{DBH}=90^o\left(gt\right)\)
BH là cạnh chung
\(\Rightarrow\Delta AHB=\Delta DBH\left(c.g.c\right)\)
b) Ta có: \(\Delta AHB=\Delta DBH\)(theo a)
\(\Rightarrow\widehat{ABH}=\widehat{DHB}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AB // DH
c) \(\Delta AHB:\widehat{AHB}=90^o\)
\(\Rightarrow\widehat{BAH}+\widehat{ABH}=90^o\)(trong tam giác vuông, 2 góc nhọn phụ nhau)
\(\Rightarrow35^o+\widehat{ABH}=90^o\)
\(\Rightarrow\widehat{ABH}=55^o\)
\(\Delta ABC:\widehat{A}=90^o\)
\(\Rightarrow\widehat{ACB}+\widehat{ABC}=90^o\)(trong tam giác vuông, 2 góc nhọn phụ nhau)
\(\Rightarrow\widehat{ACB}+55^o=90^o\)
\(\Rightarrow\widehat{ACB}=35^o\)
khỏi ghi kết luận giả thuyết thôi đc rồi =)))
GT:
△ABC cân tại A
AH ⊥ BC tại H
Làm gì có KL?