Tìm x
x^2 - 10x - 11 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Sửa đề: \(x^3-3x^2-10x=0\)
\(\Leftrightarrow x\left(x^2-3x-10\right)=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-2\end{matrix}\right.\)
\(\dfrac{-12}{25}.\left(\dfrac{3}{4}-x+\dfrac{6}{-11}-\dfrac{5}{6}\right)=0\)
\(\dfrac{3}{4}-x+\dfrac{-6}{11}-\dfrac{5}{6}=0\)
\(\dfrac{3}{4}-x+\dfrac{-91}{66}=0\)
\(\dfrac{3}{4}-x=0-\left(\dfrac{-91}{66}\right)\)
\(\dfrac{3}{4}-x=\dfrac{91}{66}\)
\(x=\dfrac{-83}{132}\)
Đáp án B
Ta có: a = 2 ; b = -10 nên b’ = -5; c = m + 1
Δ ' = ( - 5 ) 2 - 2 . ( m + 1 ) = 25 - 2 m - 2 = 23 - 2 m
Để Δ ' = 11 t h ì 23 – 2 m = 11
⇔ -2m = -12 ⇔ m = 6
a) x2 - 4x - 5 = 0
=> x2 - 5x + x - 5 = 0
=> x(x - 5) + (x - 5) = 0
=> (x + 1)(x - 5) = 0
=> \(\orbr{\begin{cases}x+1=0\\x-5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)
b) 4x2 + 7x - 11 = 0
=> 4x2 + 11x - 4x - 11 = 0
=> x(4x + 11) - (4x + 11) = 0
=> (x - 1)(4x + 11) = 0
=> \(\orbr{\begin{cases}x-1=0\\4x+11=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=-\frac{11}{4}\end{cases}}\)
c) -7x2 + 6x + 1 = 0
=> -7x2 + 7x - x + 1 = 0
=> -7x(x - 1) - (x - 1) = 0
=> (-7x - 1)(x - 1) = 0
=> \(\orbr{\begin{cases}-7x-1=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}-7x=1\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{7}\\x=1\end{cases}}\)
d) -10x2 + 7x + 3 = 0
=> -10x2 + 10x - 3x + 3 = 0
=> -10x(x - 1) - 3(x - 1) = 0
=> (-10x - 3)(x - 1) = 0
=> \(\orbr{\begin{cases}-10x-3=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}-10x=3\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{3}{10}\\x=1\end{cases}}\)
a/ (x-5)^2-49=0
<=>(x-5)2-72
<=>(x-5-7)(x-5+7)=0
<=>(x-12)(x+2)=0
<=>x-12=0 hoặc x+2=0
<=>x=12 hoặc x=-2
vậy x=12 hoặc x=-2
b/ (x+11)^2=121
<=>(x+11)2-121=0
<=>(x+11)2-112=0
<=>(x+11-11)(x+11+11)=0
<=>x(x+22)=0
<=>x=0 hoặc x+22=0
<=>x=0 hoặc x=-22
vậy x=0 hoặc x=-22
c/ x.(x+7)-6x-42=0
<=>x2+7x-6x-42=0
<=>x2+x-42=0
<=>x2-6x+7x-42=0
<=>x(x-6)+7(x-6)=0
<=>(x-6)(x-7)=0
<=>x-6=0 hoặc x-7=0
<=>x=6 hoặc x=7
vậy x=6;7
d/ x^4-2x^3+10x^2-20x=0
<=>x3(x-2)+10x(x-2)=0
<=>(x-2)(x3+10x)=0
<=>(x-2)x(x2+10)=0
<=>x-2=0 hoặc x=0 hoặc x2+10=0
<=>x=2 hoặc x=0 hoặc x2=-10(vô lí)
vậy x=2;0
a)(x-5)2-49=0
<=>(x-5-7)(x-5+7)=0
<=>(x-12)(x+2)=0
<=>x-12=0 hoặc x+2=0
<=>x=12 hoặc x=-2
b)(x+11)2=121
<=>(x+11)2-121=0
<=>(x+11-11)(x+11+11)=0
<=>x(x+22)=0
<=>x=0 hoặc x+22=0
<=>x=0 hoặc x=-22
c)x(x+7)-6x-42=0
<=>x(x+7)-(6x+42)=0
<=>x(x+7)-6(x+7)=0
<=>(x+7)(x-6)=0
<=>x+7=0 hoặc x-6=0
<=>x=-7 hoặc x=6
d)x4-2x3+10x2-20x=0
<=>x(x3-2x2+10x-20)=0
<=>x[(x3-2x2)+(10x-20)]=0
<=>x[x2(x-2)+10(x-2)]=0
<=>x(x-2)(x2+10)=0
Do x2>0=>x2+10>0
=>x(x-2)=0
<=>x=0 hoặc x-2=0
<=>x=0 hoặc x=2
10.
\((x^2-2x-3)(x^2+10x+21)=25\)
\(\Leftrightarrow (x-3)(x+1)(x+3)(x+7)=25\)
\(\Leftrightarrow [(x-3)(x+7)][(x+1)(x+3)]=25\)
\(\Leftrightarrow (x^2+4x-21)(x^2+4x+3)=25\)
Đặt \(x^2+4x-21=a\) thì pt trở thành:
\(a(a+24)=25\)
\(\Leftrightarrow a^2+24a-25=0\)
\(\Leftrightarrow (a-1)(a+25)=0\Rightarrow \left[\begin{matrix} a=1\\ a=-25\end{matrix}\right.\)
Nếu \(a=x^2+4x-21=1\Leftrightarrow x^2+4x-22=0\)
\(\Leftrightarrow (x+2)^2=26\Rightarrow x+2=\pm \sqrt{26}\Rightarrow x=-2\pm \sqrt{26}\) (t/m)
Nếu \(a=x^2+4x-21=-25\Leftrightarrow x^2+4x+4=0\Leftrightarrow (x+2)^2=0\Rightarrow x=-2\) (t/m)
Vậy \(x\in \left\{-2\pm \sqrt{26}; -2\right\}\)
11.
\(x^4-4x^3+10x^2+37x-14=0\)
\(\Leftrightarrow (x^4-4x^3+4x^2)+6x^2+37x-14=0\)
\(\Leftrightarrow x^4+2x^3-(6x^3+12x^2)+(22x^2+44x)-(7x+14)=0\)
\(\Leftrightarrow x^3(x+2)-6x^2(x+2)+22x(x+2)-7(x+2)=0\)
\((x+2)(x^3-6x^2+22x-7)=0\)
\(\Rightarrow \left[\begin{matrix} x+2=0\\ x^3-6x^2+22x-7=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x^3-6x^2+22x-7=0(*)\end{matrix}\right.\)
Đối với pt $(*)$ (ta sử dụng pp Cardano)
\(\Leftrightarrow (x^3-6x^2+12x-8)+10x+1=0\)
\(\Leftrightarrow (x-2)^3+10(x-2)+21=0\)
Đặt \(x-2=a-\frac{10}{3a}\) thì PT trở thành:
\((a-\frac{10}{3a})^3+10(a-\frac{10}{3a})+21=0\)
\(\Leftrightarrow a^3-\frac{1000}{27a^3}+21=0\)
\(\Leftrightarrow 27a^6+576a^3-1000=0\). Đặt \(a^3=t\) thì:
\(27t^2+576t-1000=0\)
\(\Rightarrow 27(t^2+\frac{64}{3}t+\frac{32^2}{3^2})=4072\)
\(\Leftrightarrow 27(t+\frac{32}{3})^2=4072\Rightarrow t=\pm\sqrt{\frac{4072}{27}}-\frac{32}{3}\)
\(\Rightarrow a=\sqrt[3]{\pm \sqrt{\frac{4072}{27}}-\frac{32}{3}}\)
\(x=2+a-\frac{10}{3a}\) với giá trị $a$ như trên.
P/s: Bài này mình thấy có vẻ không phù hợp với lớp 8.
X2-10x-11=0
<->x2+x-11x-11=0
<->x(x+1)-11(x+1)=0
<-> (x-11)(x+1)=0
<-> x-11=0
Hoặc x+1=0
X=-1
X=11
(x-5)^2-36=0
(x-5)^2=36
x-5=6
x-5=-6
x=11 hoặc -1