765 - 211 - 212 =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=\frac{2^{10}+2-1}{2^9+1}=\frac{2(2^9+1)-1}{2^9+1}=2-\frac{1}{2^9+1}$
$B=\frac{2^{12}+1}{2^{11}+1}=\frac{2(2^{11}+1)-1}{2^{11}+1}=2-\frac{1}{2^{11}+1}$
Vì $2^9+1< 2^{11}+1\Rightarrow \frac{1}{2^9+1}> \frac{1}{2^{11}+1}$
$\Rightarrow 2-\frac{1}{2^9+1}< 2-\frac{1}{2^{11}+1}$
$\Rightarrow A< B$
Gọi b,c lần lượt là thương của 2 phép chia
ta có : (1) a=(211 x b )+116
=> 211 x b =a - 116
=>(2) b = \(\frac{a-116}{211}\)
(3) a=(212 x c ) + 107
=> 212 x c = a -107
=> (4) c= \(\frac{a-107}{212}\)
từ (1) và (3) => (211 x b )+116 =(212 x c ) + 107 (5)
từ (2),(4),(5)=> (211 x \(\frac{a-116}{211}\) )+116 = (212 x \(\frac{a-107}{212}\) )+ 107
=> a = tự tính nha dúng thì k
765-211-212=342
765 - 211 - 212
= 554 - 212
= 342