Tìm hệ số đa thức N(x)=ax^2+bx+4 biết N(x) có hai nghiệm là x=1 và x=-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt có 2 no x=-2,x=3
Thì x=-2 hoặc x=3 làm cho ax²+bx+c=0
`=>ax^2+bx+c=(x+2)(x-3)`
`<=>ax^2+bx+c=x^2-x-6`
`=>a=1,b=-1,c=-6`
mik nghĩ
bn có thể tham khảo ở link :
https://olm.vn/hoi-dap/question/902782.html
~~ hok tốt ~
\(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1\\x-3\end{cases}}\)
=> x = 1 và x = 3 là nghiệm của đa thức f(x)
Mà nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
=> nghiệm của đa thức g(x) là x = { 1; 3 }
Với x = 1 thì \(g\left(x\right)=1^3-a.1^2+b.1-3=0\)
\(\Rightarrow-a+b=2\)(1)
Với x = 3 thì \(g\left(x\right)=3^3-a.3^2+3b-3=0\)
\(\Rightarrow3a-b=8\)(2)
Cộng vế với vế của (1) và (2) ta được : ( - a + b ) + (3a - b) = 10
=> 2a = 10 => a = 5
=> - 5 + b = 2 => b = 7
Vậy a = 5 ; b = 7
(x-1)(x-3)=0
=>x-1=0 hoặc x-3=0
=>x=1 hoặc x=3
Vậy nghiệm của f(x) là 1 và 3
Nghiệm của g(x) cũng là 1 và 3
Với x=1 ta có g(x)=1+a+b-3=0
=>a+b-2=0
a+b=2
Với x=3 ta có g(x)=27-9a+3b-3=0
=>24-9a+3b=0
=>8-3a+b=0
=>3a-b=8
a=\(\frac{8+b}{3}\)
Vậy với a+b=2 hoặc \(a=\frac{8+a}{3}\) thì nghiệm của đa thức f(x) cũng là nghiệm của g(x)
a) ta có: x=2 là nghiệm của A(x)
=> A(2) = 22 + a.2 + b =0
=> 4 + a.2 + b =0
=> b = -4 - a.2
ta có: x = 3 là nghiệm của A(x)
=> A(3) = 32 +a.3 + b = 0
=> 9+ a.3 + b = 0
thay số: 9+ a.3 - 4-2.a = 0
( 9-4) + (a.3-2.a) = 0
5 + a = 0
=> a = -5
mà b = 4-a.2 = 4 - (-5).2 = 4 + 10 = 14
=> b = 14
KL: a = -5; b= 14
phần b bn lm tương tự nha!