Cho 4 số nguyên thỏa mãn điều kiện a+b=c+d và ab+1=cd
Chứng minh c=d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
Ta có :a+b=c+d
\(\Rightarrow\) a=c+d-b
Thay vào ab+1=cd
\(\Rightarrow\) (c+d-b)*b+1=cd
\(\Leftrightarrow\)cb+db-cd+1-b2=0
\(\Leftrightarrow\) b(c-b)-d(c-b)+1=0
\(\Leftrightarrow\) (b-d)(c-b)=-1
Ta lại có :a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
Mà (b-d)(c-b)=-1 nên có 2 trường hợp
TH1: b-d=-1 và c-b=1
\(\Leftrightarrow\) d=b+1 và c=b+1
\(\Rightarrow\) c=d (1)
TH2: b-d=1 và c-b=-1
\(\Leftrightarrow\) d=b-1 và c=b-1
\(\Rightarrow\) c=d (2)
Vậy từ (1) và (2) ta có c=d.
bạn nhấn vào nha
cho các số nguyên a;b;c;d thỏa mãn điều kiện: a+b=c+d và a.b+1=c.d. CMR: c=d
\(a=b=c+d\Rightarrow\hept{\begin{cases}b\left(a+b=b\left(c+d\right)\right)\\ab+b^2=bc+bd\end{cases}}\)
Mà : \(ab+1=cd\)
Do đó : \(\left(ab+b^2\right)-\left(ab+1\right)=bc+bd-cd\)
\(\Leftrightarrow ab+b^2-ab-1=bc+bd-cd\)
\(\Leftrightarrow b^2-bc-bd+cd=1\)
\(\Leftrightarrow b\left(b-c\right)-d\left(b-c\right)=1\)
\(\Leftrightarrow\left(b-c\right)\left(b-d\right)=1\)
\(\Leftrightarrow\orbr{\begin{cases}b-c=b-d=1\\b-c=b-d=1\end{cases}}\)
\(\Rightarrow c=d\)
a+b = c+d => a = c+d-b
Thay vào ab+1 = cd
=> (c+d-b).b+1 = cd
<=> cb+db-cd+1-b2 = 0
<=> b(c-b)-d(c-b)+1 = 0
<=> (b-d)(c-b) = -1
a,b,c,d,nguyên nên b-d và c-b nguyên
Mà (b-d)(c-b) = -1 nên ta xét 2 trường hợp:
TH1: b-d = -1 và c-b = 1
<=> d = b+1 và c = b+1
=> c = d
TH2: b-d = 1 và c-b = -1
<=> d = b-1 và c = b-1
=> c = d
Vậy c = d.
Ta có: a+b=c+d
\(\Leftrightarrow a=c+d-b\)
Thay vào : ab+1=cd, ta được:
\(\left(c+d-b\right)b+1=cd\)
\(\Leftrightarrow bc+bd-b^2+1-cd=0\)
\(\Leftrightarrow\left(bc-b^2\right)+\left(bd-cd\right)=-1\)
\(\Leftrightarrow-b\left(b-c\right)+d\left(b-c\right)=-1\)
\(\Leftrightarrow\left(b-c\right)\left(d-b\right)=-1\)
Vì b,c,d là số nguyên nên suy ra: b-c=b-d=1 hoặc b-c=b-d=-1
Vậy: c=d