K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2016

b)x3-7x+6=x3-x-6x+6=x(x2-1)-6(x-1)=x(x-1)(x+1)-6(x-1)

=(x-1)[x(x+1)-6]=(x-1)(x2+x-6)=(x-1)(x2+3x-2x-6)=(x-1)[x(x+3)-2(x+3)]=(x-1)(x-2)(x+3)

c)x3-x2-x-2

=x3-2x2+x2-2x+x-2

=x2(x-2)+x(x-2)+(x-2)

=(x-2)(x2+x+1)

3 tháng 9 2018

\(x^3-7x+6\)

\(=x^3-x^2+x^2-x-6x+6\)

\(=x^2\left(x-1\right)+x\left(x-1\right)-6\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x-6\right)\)

\(=\left(x-1\right)\left(x-2\right)\left(x+3\right)\)

`a, 8x^3 - 1 = (2x-1)(4x^2 + 2x - 1)`

`b, x^3 + 27y^3 = (x+3y)(x^3 - 3xy + 9y^2)`

`c, x^3 - y^6 = (x-y^2)(x+xy^2 + y^4)`

 

22 tháng 7 2023

anh off đi

AH
Akai Haruma
Giáo viên
23 tháng 12 2022

Lời giải:
a.

$x^2-7x+6=(x^2-x)-(6x-6)=x(x-1)-6(x-1)=(x-1)(x-6)$

b.

$x-3\sqrt{3}x-12\sqrt{3}$ không phân tích được thành nhân tử

c.

$x^2+4x-2$ không phân tích được thành nhân tử với các hệ số nguyên.

1A:

a: \(x^3+2x=x\left(x^2+2\right)\)

b: \(3x-6y=3\left(x-2y\right)\)

c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)

\(=5\left(x+3y\right)\left(1-3x\right)\)

d: \(3\left(x-y\right)-5x\left(y-x\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(x-y\right)\left(5x+3\right)\)

7 tháng 10 2021

1A. a. x(x2+2) 

b. 3(x-2y)

c. 5(x+3y)(1-3x) 

d. (x-y) (3-5x)

1B. a. 2x(2x-3)

b.xy(x2-2xy+5)

c. 2x(x+1)(x+2)

d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)

 

30 tháng 9 2021

a) \(=\left(x^2-6\right)\left(x^2-1\right)=\left(x^2-6\right)\left(x-1\right)\left(x+1\right)\)

b) \(=\left(x^2-1\right)\left(x^2+3\right)=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)

c) \(=x^2\left(x-1\right)-x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-x+4\right)\)

30 tháng 9 2021

cảm ơn

 

giỏi vậy tui ngồi làm quài ko ra lun :^

6 tháng 8 2021

a, \(x-2y+x^2-4y^2=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(1+x+2y\right)\)

b, \(x^2-4x^2y^2+y^2+2xy=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)

c, \(x^6-x^4+2x^3+2x^2=x^6+2x^3+1-x^4+2x^2-1\)

\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)

\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)

d, \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-\left(2y\right)^3=\left(x+1-2y\right)\left(x+1+2y\right)\)

a) Ta có: \(x-2y+x^2-4y^2\)

\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)

\(=\left(x-2y\right)\left(1+x+2y\right)\)

b: Ta có: \(x^2-4x^2y^2+y^2+2xy\)

\(=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)

13 tháng 10 2021

a) \(2x^2+3x-27\)

\(=2x^2+9x-6x-27\)

\(=x\left(2x+9\right)-3\left(2x+9\right)\)

\(=\left(2x+9\right)\left(x-3\right)\)

b) sửa đề thành \(x^2+7x+6\)

\(x^2+7x+6\)

\(=x^2+x+6x+6\)

\(=x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x+6\right)\)

 

17 tháng 10 2021

\(a,=2x^2-6x+9x-27=\left(x-3\right)\left(2x+9\right)\\ b,=x^2-7x+\dfrac{49}{4}-\dfrac{73}{4}\\ =\left(x-\dfrac{7}{2}\right)^2-\dfrac{73}{4}=\left(x-\dfrac{7}{2}-\dfrac{\sqrt{73}}{2}\right)\left(x-\dfrac{7}{2}+\dfrac{\sqrt{73}}{2}\right)\\ c,=x^2+3x+4x+12=\left(x+3\right)\left(x+4\right)\\ d,=x^2-2x-8x+16=\left(x-2\right)\left(x-8\right)\\ e,=x^2-3x-5x+15=\left(x-3\right)\left(x-5\right)\\ g,=x^2+2x+4x+8=\left(x+2\right)\left(x+4\right)\)

22 tháng 7 2023

a) \(x\left(x-1\right)+\left(1-x\right)^2\)

\(=x\left(x-1\right)+\left(x-1\right)^2\)

\(=\left(x-1\right)\left(x+x-1\right)\)

\(=\left(x-1\right)\left(2x-1\right)\)

b) \(\left(x+1\right)^2-3\left(x+1\right)\)

\(=\left(x+1\right)\left[\left(x+1\right)-3\right]\)

\(=\left(x+1\right)\left(x+1-3\right)\)

\(=\left(x+1\right)\left(x-2\right)\)

c) \(2x\left(x-2\right)-\left(x-2\right)^2\)

\(=\left(x-2\right)\left[2x-\left(x-2\right)\right]\)

\(=\left(x-2\right)\left(2x-x+2\right)\)

\(=\left(x-2\right)\left(x+2\right)\)

23 tháng 7 2023

\(a,\left(x-1\right)^2-2^2=\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)\\ b,=\left(2x\right)^2+2.2x.3+3^2\\ =\left(2x+3\right)^2\\ c,=x^3-\left(2y\right)^3\\ =\left(x-2y\right)\left(x^2+2xy+4y^2\right)\\ d,=x^3\left(x^2-1\right)-\left(x^2-1\right)\\ =\left(x^3-1\right)\left(x^2-1\right)\\ =\left(x-1\right)\left(x^2+x+1\right)\left(x-1\right)\left(x+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\)

\(e,=-4x^2\left(x-1\right)+\left(x-1\right)\\ =\left(1-4x^2\right)\left(x-1\right)\\ =\left(1-2x\right)\left(1+2x\right)\left(x-1\right)\)

\(f,=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3\\ =\left(2x+1\right)^3\)