K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2022

nghiệm hay j

24 tháng 4 2022

Tính j vậy bạn

21 tháng 10 2021

1. (x-3)2

2. (3y+2x)2

3. (1/5x-8y)(1/5x+8y)

4. (x-2y)(x2+2xy+4y2)

5. (4x-3-x-1)(4x-3+x+1)

(3x-4)(5x-2)

20 tháng 10 2021

2)3x2-6xy+3y2=3(x2-2xy+y2)=3(x-y)2

3)3(x-y)-5y(y-x)=3(x-y)+5y(x-y)=(x-y)(3+5y)

5)(x+y)3-(x-y)3=[(x+y)-(x-y)][(x+y)2+(x+y)(x-y)+(x-y)2]=(x+y-x+y)(x2+2xy+y2+x2-y2+x2-2xy+y2)=2y(3x2+y2)

6)3x2-5x+2=3x2-2x-3x+2=(3x2-3x)-(2x-2)=3x(x-1)-2(x-1)=(x-1)(3x-2)

30 tháng 10 2021

Mk xin phép ko vt lại đề nx

\(\Rightarrow A=\left[\left(3x-2\right)\left(x+1\right)-\left(2x+5\right)\left(x^2-1\right)\right]\div x+1\)

\(\Rightarrow A=3x-2-\left(2x-5\right)\left(x-1\right)\)

\(\Rightarrow x=\dfrac{1}{2}\)

\(\Rightarrow A=\dfrac{3}{2}-2-\left(1-5\right)\left(\dfrac{1}{2}-1\right)=-\dfrac{5}{2}\)

NV
3 tháng 12 2021

\(6x^2-5x+a=\left(6x^2-5x-6\right)+a+6=\left(3x+2\right)\left(2x-3\right)+a+6\)

Do \(\left(3x+2\right)\left(2x-3\right)⋮3x+2\) nên đa thức đã cho chia hết 3x+2 khi và chỉ khi:

\(a+6=0\Rightarrow a=-6\)

24 tháng 5 2021

`x^4+3x^2-2=0`

Đặt `x^2=t(t>=0)`

`pt<=>t^2+3t-2=0`

`<=>t^2+3t+9/4=17/4`

`<=>(t+3/2)^2=17/4`

`<=>t+3/2=sqrt{17}/2(do \ t>=0=>t+3/2>=3/2)`

`<=>t=(sqrt{17}-3)/2`

`<=>x^2=(sqrt{17}-3)/2`

`<=>x=+-sqrt{(sqrt{17}-3)/2}`

Đầy tiên ta đi rút gọn biểu thức.

Có : $A = (3x+5).(2x-1) + (4x-1).(3x+2)$

$ = 6x^2 + 7x - 5 + 12x^2 + 5x - 2$

$ = 18x^2 + 12x-7$

Vì $|x| = 2$ nên $x = 2$ hoặc $x=-2$

Với $x=2$ ta có : $A = 18.2^2 + 12.2-7 = 89$

Với $x=-2$ ta có : $A = 18.(-2)^2 + 12.(-2) - 7 = 41$

3 tháng 8 2021

Cảm ơn bạn nha <3

29 tháng 6 2021

Câu a,b  hình như nhầm đề mình tự sửa nha ;-;

a, Ta có : \(\left(x^2-x-6\right)^2+\left(x-3\right)^2\)

\(=\left(x^2-3x+2x-6\right)^2+\left(x-3\right)^2\)

\(=\left(x-3\right)^2\left(x+2\right)^2+\left(x-3\right)^2\)

\(=\left(x-3\right)^2\left(\left(x+2\right)^2+1\right)\)

b, Ta có : \(\left(x^2-x-20\right)^2+\left(x+4\right)^2\)

\(=\left(x^2+4x-5x-20\right)^2+\left(x+4\right)^2\)

\(=\left(x+4\right)^2\left(x-5\right)^2+\left(x+4\right)^2\)

\(=\left(x+4\right)^2\left(\left(x-5\right)^2+1\right)\)

 

24 tháng 10 2021

\(f\left(x\right)⋮g\left(x\right)\)

\(\Leftrightarrow x^4-3x^3+4x^2-x^2+3x-4+\left(a-3\right)x+\left(b+4\right)⋮x^2-3x+4\)

\(\Leftrightarrow\left(a,b\right)=\left(3;-4\right)\)

a) Thay x=-1 vào A(x), ta được:

\(A\left(-1\right)=-1+\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4+...+\left(-1\right)^{99}+\left(-1\right)^{100}\)

\(=-1+1-1+1+...+\left(-1\right)+1\)

=0

Vậy: x=-1 là nghiệm của đa thức A(x)

Thay x=-1 vào A(x), ta được:

A(−1)=−1+(−1)2+(−1)3+(−1)4+...+(−1)99+(−1)100A(−1)=−1+(−1)2+(−1)3+(−1)4+...+(−1)99+(−1)100

=−1+1−1+1+...+(−1)+1=−1+1−1+1+...+(−1)+1

=0

Vậy: x=-1 là nghiệm của đa thức A(x)