Giải bất phương trình :
\(\frac{x-1}{x-3}>1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)
Đặt \(\sqrt{\frac{x+1}{x}}=t>0\)
\(bpt\Leftrightarrow\frac{1}{t^2}-2t>3\Leftrightarrow2t^3+3t^2-1< 0\Leftrightarrow\left(2t-1\right)\left(t+1\right)^2< 0\Leftrightarrow2t-1< 0\)(do \(\left(t+1\right)^2>0\))
\(\Leftrightarrow t< \frac{1}{2}hay\sqrt{\frac{x+1}{x}}< \frac{1}{2}\Rightarrow\frac{x+1}{x}< \frac{1}{4}\)
Với x >0, ta có: \(\frac{x+1}{x}< \frac{1}{4}\Leftrightarrow4\left(x+1\right)< 1\Leftrightarrow x< -\frac{3}{4}\left(trái.với.gt:x>0\right)\)
Với x<-1 ta có: \(\frac{x+1}{x}< \frac{1}{4}\Rightarrow4\left(x+1\right)>x\Rightarrow x>-\frac{3}{4}\Rightarrow-\frac{3}{4}< x< -1\)
Vậy nghiệm của hệ phương trình là: \(-\frac{3}{4}< x< -1\)
\(\frac{x+1}{2953}+\frac{x+953}{2001}+\frac{x+2950}{4}>-3\)
\(\Leftrightarrow\frac{x+1}{2953}+\frac{x+953}{2001}+\frac{x+2950}{4}+3>0\)
\(\Leftrightarrow\frac{x+1}{2953}+1+\frac{x+953}{2001}+1+\frac{x+2950}{4}+1>0\)
\(\Leftrightarrow\frac{x+1+2953}{2953}+\frac{x+953+2001}{2001}+\frac{x+2950+4}{4}>0\)
\(\Leftrightarrow\frac{x+2954}{2953}+\frac{x+2954}{2001}+\frac{x+2954}{4}>0\)
\(\Leftrightarrow\left(x+2954\right)\left(\frac{1}{2953}+\frac{1}{2001}+\frac{1}{4}\right)>0\)
Vì \(\frac{1}{2953}+\frac{1}{2001}+\frac{1}{4}>0\)
Nên \(x+2954>0\)
\(\Leftrightarrow x>-2954\)
Vậy .........
bài 1
\(\frac{x-1}{x+3}>0\) \(\left(x\ne-3\right)\)
TH1 \(\hept{\begin{cases}x-1>0\\x+3< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>1\\x< -3\end{cases}}\)(vô lí)
TH2 \(\hept{\begin{cases}x-1< 0\\x+3>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x< 1\\x>-3\end{cases}}\)\(\Rightarrow-3< x< 1\)
bài 2 . với dạng này ta áp dụng bđt \(|x|< A\Leftrightarrow\orbr{\begin{cases}x< -A\\x>A\end{cases}}\)
|x - 5| >2
\(\Leftrightarrow\orbr{\begin{cases}x-5>2\\x-5< -2\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x>7\\x< 3\end{cases}}\)
#mã mã#
a) chưa học :v
b) \(\frac{x-1}{x-3}>2\)ĐKXĐ : \(x\ne3\)
\(\Leftrightarrow x-1>2\left(x-3\right)\)
\(\Leftrightarrow x-1>2x-6\)
\(\Leftrightarrow x-1-2x+6>0\)
\(\Leftrightarrow-x+5>0\)
\(\Leftrightarrow x>5\)( thỏa mãn ĐKXĐ )
Vậy....
a) Dùng bảng xét dấu xem sao (tự lập):v
+)Với \(x< -\frac{3}{2}\);phương trình trở thành:
\(x+3=x-1\Leftrightarrow0=-4\) (vô lí,loại)
+)Với \(-\frac{3}{2}\le x< 0\);phương trình trở thành:
\(-3x-3=x-1\Leftrightarrow4x=-2\Leftrightarrow x=-\frac{1}{2}\) (t/m)
+)Với \(x\ge0\);phương trình trở thành:
\(-x-3=x-1\Leftrightarrow2x=-2\Leftrightarrow x=-1\) (loại)
Vậy tập hợp nghiệm của phương trình: \(x=\left\{-\frac{1}{2}\right\}\)
cho tam giác abc vuông tại a và đường cao ah =12cm, ch = 5cm. tính sin b sin c
ai giải giúp mình bài toán này với mk đang cần rất gấp
Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa
V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho
\(3x-3=|2x+1|\)
Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)
Vậy S={3}
Cài đề câu b ,bn xem lại nhé!
\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)
\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)
\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)
\(\Leftrightarrow6x-24>0\)
\(\Leftrightarrow x>4\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ : S = { \(x\text{\x}>4\)}
\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)
\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)
\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)
\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)
\(\Leftrightarrow15x-165\le0\)
\(\Leftrightarrow x\le11\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........
tk mk nka !!! chúc bạn học tốt !!!
\(\orbr{\begin{cases}x>3\\x\le0\end{cases}}\)Thì mới thỏa mãn yêu cầu bài
Thái Viết Nam sao