K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

\(\hept{\begin{cases}y-2>0\\x+1< 0\end{cases}}\Rightarrow\hept{\begin{cases}y>2\\x< -1\end{cases}}\)

16 tháng 3 2020

Bạn hỏi hay trả lời vậy?

a: \(\Leftrightarrow\left\{{}\begin{matrix}35x-28y=21\\35x-45y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17y=-19\\5x-4y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{19}{17}\\x=-\dfrac{5}{17}\end{matrix}\right.\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{8}{y}=18\\\dfrac{10}{x}+\dfrac{8}{y}=102\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{x}=120\\\dfrac{1}{x}-\dfrac{8}{y}=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{120}\\y=-\dfrac{44}{39}\end{matrix}\right.\)

c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{30}{x-1}+\dfrac{3}{y+2}=3\\\dfrac{25}{x-1}+\dfrac{3}{y+2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x-1}=1\\\dfrac{10}{y-1}+\dfrac{1}{y+2}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=5\\\dfrac{1}{y+2}+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=-3\end{matrix}\right.\)

d: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{135}{2x-y}+\dfrac{160}{x+3y}=35\\\dfrac{135}{2x-y}-\dfrac{144}{x+3y}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3y=8\\2x-y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+6y=16\\2x-y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=5\end{matrix}\right.\)

a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)

ĐK: \(x+y\ge0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)

Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)

\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)

\(\Leftrightarrow a^3-ab-a+b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)

Thay (3) vào (2)  ta được

\(x^2-y=1\Leftrightarrow y=x^2-1\)

\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)

Giải (4) 

Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)

do đó (4) không xảy ra

Vậy..........

15 tháng 12 2016

ĐK: x khác 0

pt (2) \(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2=13\)

Đặt \(a=x+\frac{1}{x};b=y+\frac{1}{y}\), hệ pt trở thành:

\(\begin{cases}a+b=5\\a^2+b^2=13\end{cases}\) giải hệ pt đối xứng loại I được

\(\begin{cases}a=2\\b=3\end{cases}\) hoặc \(\begin{cases}a=3\\b=2\end{cases}\)

Thế vào được tập nghiệm của hệ pt đã cho:

\(\left\{\left(1;\frac{3-\sqrt{5}}{2}\right);\left(1;\frac{3+\sqrt{5}}{2}\right);\left(\frac{3-\sqrt{5}}{2};1\right);\left(\frac{3+\sqrt{5}}{2};1\right)\right\}\)

16 tháng 12 2016

cam on minh da biet lam bai nay, truoc khi ban tra loi nen minh chua tick dung dau nhe ,mac du cach lam dung roi

11 tháng 5 2016

Điều kiện \(x\ne0;y\ne0\)

Đặt \(x+\frac{1}{x}=a;y+\frac{1}{y}=b\), khi đó :

\(x^2+\frac{1}{x^2}=a^2-2;y^2+\frac{1}{y^2}=b^2-2\)

Thay vào hệ phương trình ta được :

\(\begin{cases}a+b=5\\a^2+b^2=13\end{cases}\)\(\Leftrightarrow\begin{cases}a+b=5\\\left(a+b\right)^2-2ab=13\end{cases}\)\(\Leftrightarrow\begin{cases}a+b=5\\ab=6\end{cases}\)

Do đó a và b là nghiệm của phương trình : \(t^2-5t+6=0\Leftrightarrow\begin{cases}t=2\\t=3\end{cases}\) 

vậy \(\left(a;b\right)=\left(2;3\right);\left(a;b\right)=\left(3;2\right)\)

* Khi \(\begin{cases}a=2\\b=3\end{cases}\) ta có :

\(\begin{cases}x+\frac{1}{x}=2\\y+\frac{1}{y}=3\end{cases}\)\(\Leftrightarrow\begin{cases}x^2-2x+1=0\\y^2-3x+1=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=1\\y=\frac{3\pm\sqrt{5}}{2}\end{cases}\)

* Khi \(\begin{cases}a=3\\b=2\end{cases}\) ta có :

\(\begin{cases}x+\frac{1}{x}=3\\y+\frac{1}{y}=2\end{cases}\)\(\Leftrightarrow\begin{cases}x^2-3x+1=0\\y^2-2x+1=0\end{cases}\)\(\Leftrightarrow\begin{cases}y=1\\x=\frac{3\pm\sqrt{5}}{2}\end{cases}\)

Các nghiệm (x;y) là 

\(\left(1;\frac{3+\sqrt{5}}{2}\right);\left(1;\frac{3-\sqrt{5}}{2}\right);\left(\frac{3+\sqrt{5}}{2};1\right);\left(\frac{3-\sqrt{5}}{2};1\right)\)