Phân tích đa thức thành nhân tử:
x3+1-3(x2-x+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
$x^2+4y^2+4xy-16=[x^2+(2y)^2+2.x.2y]-16$
$=(x+2y)^2-4^2=(x+2y-4)(x+2y+4)$
Câu 2:
$x^3+x^2+y^3+xy=(x^3+y^3)+(x^2+xy)$
$=(x+y)(x^2-xy+y^2)+x(x+y)=(x+y)(x^2-xy+y^2+x)$
Câu 1:
\(x^2+4y^2+4xy-16\)
\(=\left(x+2y\right)^2-16\)
\(=\left(x+2y+4\right)\left(x+2y-4\right)\)
Câu 2:
\(x^3+x^2+y^3+xy\)
\(=\left(x^3+y^3\right)\left(x^2+xy\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+x\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+x\right)\)
Ta có: \(x^3-\left(y-2\right)^3+\left(y-x-2\right)^2\)
\(=\left(x-y+2\right)\left(x^2+xy-2x+y^2-4y+4\right)+\left(x-y+2\right)^2\)
\(=\left(x-y+2\right)\left(x^2+xy-2x+y^2-4y+4+x-y+2\right)\)
\(=\left(x-y+2\right)\left(x^2+y^2+6+xy-x-5y\right)\)
\(=x^3+2+3x^3-6=4x^3-4=4\left(x^3-1\right)=4\left(x-1\right)\left(x^2+x+1\right)\)
\(x^3-y^3+2x^2+2xy\)
\(=x\left(x^2-y^2+2x+2y\right)\)
\(=\)\(x\left[\left(x+y\right)\left(x-y\right)+2\left(x+y\right)\right]\)
\(=x\left(x+y\right)\left(x-y+2\right)\)
\(=3\left(x-1\right)+x\left(x-1\right)\)
\(=\left(x-1\right)\left(x+3\right)\)
\(\left(x^2+x+1\right)\left(x^2+x+5\right)-21=x^4+x^3+5x^2+x^3+x^2+5x+x^2+x+5-21=x^4+2x^3+7x^2+6x-16=\left(x-1\right)\left(x+2\right)\left(x^2+x+8\right)\)
\(=\left(x^2+x+1\right)\left(x^2+x+1+4\right)-21\)
\(=\left(x^2+x+1\right)^2+4\left(x^2+x+1\right)-21\)
\(=\left(x^2+x+1\right)^2-3\left(x^2+x+1\right)+7\left(x^2+x+1\right)-21\)
\(=\left(x^2+x+1\right)\left(x^2+x-2\right)+7\left(x^2+x-2\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2+x+8\right)\)
\(x^3+1-3\left(x^2-x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)-3\left(x^2-x+1\right)\)
\(=\left(x-2\right)\left(x^2-x+1\right)\)