Cho :
A= x- 2xy=0.5
B =x3-2xy\(\frac{1}{2}\)
Tính A+B;A-B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(M+N=2x^2+x^2-2xy-2xy-3y^2+3y^2+1-1=3x^2-4xy\)
\(M-N=2x^2-x^2-2xy+2xy-3y^2-3y^2+1+1=x^2-6y^2+2\)
b, \(P\left(x\right)+Q\left(x\right)=x^3-4x^3+2x^2-6x+x+2-5=-3x^3+2x^2-5x-3\)
\(P\left(x\right)-Q\left(x\right)=x^3+4x^3-2x^2-6x-x+2+5=5x^3-2x^2-7x+7\)
Bài 2:
a: \(\left(x-8\right)\left(x^3+8\right)=0\)
=>\(\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b: \(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
=>\(4x-3-x-5=30-3x\)
=>3x-8=30-3x
=>6x=38
=>\(x=\dfrac{38}{6}=\dfrac{19}{3}\)
Bài 6:
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
b: Ta có: HB=HC
H nằm giữa B và C
Do đó: H là trung điểm của BC
=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)
ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=5^2-4^2=9\)
=>\(AH=\sqrt{9}=3\left(cm\right)\)
c: Ta có: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H
d: Ta có: HD=HE
HE<HC(ΔHEC vuông tại E)
Do đó:HD<HC
Lời giải:
a.
$x^3+y^3=(x+y)^3-3xy(x+y)=9^3-3.9.18=243$
$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$
$=[9^2-2.18]^2-2.18^2=1377$
Nếu $x\geq y$ thì:
$x^3-y^3=(x-y)(x^2+xy+y^2)$
$=|x-y|[(x+y)^2-xy]=\sqrt{(x+y)^2-4xy}[(x+y)^2-xy]$
$=\sqrt{9^2-4.18}(9^2-18)=189$
Nếu $x< y$ thì $x^3-y^3=-189$
b.
$A=(x+y)^2-6(x+y)+y-5$
$=(-9)^2-6(-9)+y-5=130+y$
Chưa đủ cơ sở để tính biểu thức.
1) \(\frac{xy}{x^2+y^2}=\frac{3}{8}\Leftrightarrow3x^2+3y^2-8xy=0\)
Nhận thấy điều kiện của phương trình là x,y cùng khác 0
Chia cả hai vê của phương trình trên cho \(y^2\ne0\)được :
\(3\left(\frac{x}{y}\right)^2-8\left(\frac{x}{y}\right)+3=0\). Đặt \(a=\frac{x}{y}\), phương trình trở thành : \(3a^2-8a+3=0\Leftrightarrow\orbr{\begin{cases}x=\frac{4+\sqrt{7}}{3}\\x=\frac{4-\sqrt{7}}{3}\end{cases}}\)
Từ đó rút ra được tỉ lệ của \(\frac{x}{y}\). Bạn thay vào tính A là được :)
2) \(\frac{x^9-1}{x^9+1}=7\Leftrightarrow\frac{x^9-1}{x^9+1}-1=6\Leftrightarrow\frac{-2}{x^9+1}=6\Leftrightarrow x^9=\frac{-2}{6}-1=-\frac{4}{3}\)
Ta có \(A=\frac{\left(x^9\right)^2-1}{\left(x^9\right)^2+1}\). Thay giá trị của x9 vừa tính ở trên vào là được :)
Thế x=1;y=-3 và A, ta được:
\(1^3-2.1.\left(-3\right)+\left(-3\right)^3\)
\(=1+6-27\)
\(A=-20\)