Bài 3: (P): y = x và (d): y = 2mx – 4. Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ dương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT hoành độ giao điểm:
$x^2-2mx-(2m+1)=0(*)$
Để (P) và (d) cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì PT $(*)$ phải có 2 nghiệm pb $x_1,x_2$
$\Leftrightarrow \Delta'=m^2+2m+1>0\Leftrightarrow (m+1)^2>0$
$\Leftrightarrow m\neq -1$
Áp dụng định lý Viet: $x_1+x_2=2m; x_1x_2=-(2m+1)$
Khi đó:
$\sqrt{x_1+x_2}+\sqrt{3+x_1x_2}=2m+1$
$\Leftrightarrow \sqrt{2m}+\sqrt{3-2m-1}=2m+1$
\(\Leftrightarrow \left\{\begin{matrix}
0\leq m< 1\\
\sqrt{2m}+\sqrt{2(1-m)}=2m+1\end{matrix}\right.\)
Bình phương 2 vế dễ dàng giải ra $m=\frac{1}{2}$ (thỏa)
a:
b: PTHĐGĐ là:
x^2+2x-3=0
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
Khi x=-3 thì y=9
Khi x=1 thì y=1
c: PTHĐGĐ là:
x^2-2mx+4=0
Δ=(-2m)^2-4*1*4=4m^2-16
Để (P) cắt (d') tại 2 điểm pb thì 4m^2-16>0
=>m>2 hoặc m<-2
5xA-xB=1 và xA+xB=2m
=>6xA=2m+1 và xB=2m-xA
=>xA=1/3m+1/6 và xB=2m-1/3m-1/6=5/3m-1/6
xA*xB=4
=>(1/3m+1/6)(5/3m-1/6)=4
=>5/9m^2-1/18m+5/18m-1/36-4=0
=>m=5/2(nhận) hoặc m=-29/10(nhận)
a: PTHĐGĐ là:
x^2-2x+m+1=0
Khi x=-1 thì pt sẽ là (-1)^2-2*(-1)+m+1=0
=>m+1+1+2=0
=>m=-4
x1+x2=2
=>x2=2+1=3
a: Thay x=1 vào y=4x+m, ta được:
y=4*1+m=m+4
Thay x=1 và y=m+4 vào y=2mx+5, ta được:
2m+5=m+4
=>m=-1
b: Thay x=3 và y=0 vào (d), ta được:
3(3m-2)+4=0
=>9m-6+4=0
=>9m-2=0
=>m=2/9
a: Phương trình hoành độ giao điểm là:
\(x^2=2mx+2m+8\)
=>\(x^2-2mx-2m-8=0\)(1)
Thay m=-4 vào (1), ta được:
\(x^2-2\cdot\left(-4\right)\cdot x-2\cdot\left(-4\right)-8=0\)
=>\(x^2+8x=0\)
=>x(x+8)=0
=>\(\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
Thay x=0 vào (P), ta được:
\(y=0^2=0\)
Thay x=-8 vào (P), ta được:
\(y=x^2=\left(-8\right)^2=64\)
Vậy: (P) và (d) cắt nhau tại O(0;0) và A(-8;64)
b: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(-2m-8\right)\)
\(=4m^2+8m+32\)
\(=4m^2+8m+4+28=\left(2m+2\right)^2+28>=28>0\forall m\)
=>Phương trình (1)luôn có hai nghiệm phân biệt
=>(P) luôn cắt (d) tại hai điểm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1\cdot x_2=\dfrac{c}{a}=-2m-8\end{matrix}\right.\)
mà \(x_1+2x_2=2\) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1+2x_2=2\\x_1+x_2=2m\\x_1\cdot x_2=-2m-8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_2=2-2m\\x_1=2m-2+2m=4m-2\\x_1\cdot x_2=-2m-8\end{matrix}\right.\)
=>(2-2m)(4m-2)=-2m-8
=>\(8m-4-8m^2+4m=-2m-8\)
=>\(-8m^2+12m-4+2m+8=0\)
=>\(-8m^2+14m+4=0\)
=>\(-8m^2+16m-2m+4=0\)
=>-8m(m-2)-2(m-2)=0
=>(m-2)(-8m-2)=0
=>\(\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{4}\end{matrix}\right.\)
a. Em tự giải
b,
Phương trình hoành độ giao điểm (d) và (P):
\(x^2=2mx+2m+8\Leftrightarrow x^2-2mx-2m-8=0\) (1)
\(\Delta'=m^2+2m+8=\left(m+1\right)^2+7>0;\forall m\)
\(\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb với mọi m hay (d) luôn cắt (P) tại 2 điểm pb.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-2m-8\end{matrix}\right.\)
Kết hợp hệ thức Viet và đề bài ta được:
\(\left\{{}\begin{matrix}x_1+2x_2=2\\x_1+x_2=2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=-2m+2\\x_1=4m-2\\\end{matrix}\right.\)
Thế vào \(x_1x_2=-2m-8\)
\(\Rightarrow\left(4m-2\right)\left(-2m+2\right)=-2m-8\)
\(\Leftrightarrow8m^2-14m-4=0\)
\(\Rightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{4}\end{matrix}\right.\)
Chắc đề đúng là: (P): \(y=x^2\)
Phương trình hoành độ giao điểm (d) và (P):
\(x^2=2mx-4\Leftrightarrow x^2-2mx+4=0\) (1)
Để (d) cắt (P) tại 2 điểm pb có hoành độ dương
\(\Leftrightarrow\) (1) có 2 nghiệm dương phân biệt
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-4>0\\x_1+x_2=2m>0\\x_1x_2=4>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\\m>0\end{matrix}\right.\) \(\Rightarrow m>2\)
dà