B1.So sánh các số sau,số nào lớn hơn?
a)27 mu 11 va 81 mu 8 b)625 mu 5 va 125 mu 7
c)5 mu 36 va 11 mu 24 d)3 mu 2n va 2 mu 3n (n thuoc N*)
Không sai đề bài đâu!!!Giải rõ lời giải ra nha!!!Tiện thể ai có hình Naruto hoặc Kurama thì kb nha!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
vi \(8^{100}< 9^{100}\)nen \(2^{300}< 3^{200}\)
a: \(\left(-\dfrac{1}{16}\right)^{100}=\left(\dfrac{1}{16}\right)^{100}=\left(-\dfrac{1}{2}\right)^{400}\)
\(\left(-\dfrac{1}{2}\right)^{500}=\left(-\dfrac{1}{2}\right)^{500}\)
mà \(400< 500\)
nên \(\left(-\dfrac{1}{16}\right)^{100}< \left(-\dfrac{1}{2}\right)^{500}\)
a) 164 = (24)4 = 216
85 = (23)5 = 215
Vì 216>215 nên 164>85
b) 277=(33)7=321
910=(32)10=320
Vì 321>320 nên 277>910
c) 2300=(23)100=8100
3200=(32)100=9100
Vì 8100 < 9100 nên 2300 < 3200
Ta có:\(2^{36}\)và \(3^{27}\)
\(2^{36}=\left(2^4\right)^9=16^9\)
\(3^{27}=\left(3^3\right)^9=27^9\)
Vì \(16< 27\Rightarrow16^9< 27^9\)
Vậy....
b,\(9^{20}\)và \(9999^{10}\)
\(9^{20}=\left(9^2\right)^{10}=81^{10}\)
\(9999^{10}\)
Vì \(81< 9999\Rightarrow81^{10}< 9999^{10}\)
Vậy ...
c,\(54^4\)
\(21^{12}=\left(21^3\right)^4=9261^4\)
Vì \(54< 9261\Rightarrow54^4< 9261^4\)
Vậy...
Bài 1:
Ta có: abcd=100ab+cd=99ab+(ab+cd)
Vì 99 chia hết cho 99 =)ab chia hết cho 99=>(ab+cd) chia hết cho 99
Hay abcd chia hết cho 99;(ab+cd) chia hết cho 99
Vậy nếu abcd chia hết cho 99 thì (ab+cd) chia hết cho 99 và ngược lại
Bài 1:
a) \(8^5\cdot8^2=8^7\)
b) \(9^3\cdot3^2=\left(3^2\right)^3\cdot3^2=3^6\cdot3^2=3^8\)
c) \(2^7\cdot5^7=10^7\)
d) \(27^6:3^3=\left(3^3\right)^6:3^3=3^{18}:3^3=3^{15}\)
Bài 2:
a) \(x^6:x^3=125\)
\(\Rightarrow x^3=125\)
\(\Rightarrow x=5\)
b) \(x^{20}=x\)
\(\Rightarrow x^{20}-x=0\)
\(\Rightarrow x\left(x^{19}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{19}-1=0\Rightarrow x=1\end{matrix}\right.\)
c) \(3^x\cdot3=243\)
\(\Rightarrow3^x=81\)
\(\Rightarrow x=4\)
d) \(2x-138=2^3\cdot3^2\)
\(\Rightarrow2x-138=72\)
\(\Rightarrow2x=200\)
\(\Rightarrow x=100\)
Giải:
Bài 1:
a) \(8^5.8^2=8^{5+2}=8^7\)
b) \(9^3.3^2=3^6.3^2=3^{6+2}=3^8\)
c) \(2^7.5^7=\left(2.5\right)^7=10^7\)
d) \(27^6:3^3=3^{18}:3^3=3^{18-3}=3^{15}\)
Bài 2:
a) \(x^6:x^3=x^{6-3}=x^3=125\)
\(\Leftrightarrow x=5\)
b) \(x^{20}=x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)
c) \(3^x.3=243\)
\(\Leftrightarrow3^{x+1}=243\)
\(\Leftrightarrow3^{x+1}=3^5\)
\(\Leftrightarrow x+1=5\Leftrightarrow x=4\)
d) \(2.x-138=2^3.3^2\)
\(\Leftrightarrow2.x-138=8.9\)
\(\Leftrightarrow2.x-138=72\)
\(\Leftrightarrow2.x=72+138\)
\(\Leftrightarrow2.x=210\Leftrightarrow x=105\)
Chúc bạn học tốt!