K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔODE cân tại O

mà OI là trung tuyến

nên OI vuông góc DE

góc OIA=góc OBA=góc OCA=90 độ

=>O,I,B,A,C cùng thuộc 1 đường tròn

b: góc BIA=góc BOA

góc CIA=góc COA

mà góc BOA=góc COA

nên góc BIA=góc CIA

=>IA là phân giác của góc BIC

 

a: ΔOED cân tại O có OF là trung tuyến

nên OF vuông góc ED

góc OFA=góc OBA=góc OCA=90 độ

=>O,F,B,A,C cùng thuộc 1 đường tròn

b: góc DHC=góc CBA

góc CBA=góc DFC

=>góc DHC=góc DFC

5 tháng 4 2016

cát tuyến là đường thẳng cắt đường tròn tại 2 điểm

5 tháng 4 2016

mà làm sao để em vẽ đc cát tuyến mà điểm thứ nhất cắt đg tròn nắm giữa điểm đầu và điểm cắt đg tròn thứ 2

a) Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AB=AC(cmt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA\(\perp\)BC

Xét ΔOBC có OB=OC(=R)

nên ΔOBC cân tại O(Định nghĩa tam giác cân)

mà OH là đường cao ứng với cạnh BC

nên H là trung điểm của BC(Đpcm)

28 tháng 6 2021

sao không  có câu B bạn ơi ?? có câu c càng tốt nhưng không làm được thì bỏ qua . nhưng bạn giúp minh câu B với , thankkk
 

22 tháng 3 2018

a)  Chứng minh tứ giác ABOC nội tiếp được đường tròn.

A B O ^ = 90 0 A C O ^ = 90 0 A B O ^ + A C O ^ = 180 0

=> tứ giác ABOC nội tiếp được đường tròn.

b)  Vẽ cát tuyến ADE  của (O) sao cho ADE  nằm giữa 2 tia AO, AB; D, E Î (O) và D nằm giữa A, E. Chứng minh  A B 2 = A D . A E .

Tam giác ADB đồng dạng với tam giác ABE

⇒ A B A E = A D A B ⇔ A B 2 = A D . A E

c)  Gọi F là điểm đối xứng của D qua AO, H là giao điểm của AO và BC. Chứng minh: ba điểm E, F, H  thẳng hàng.

Ta có  D H A ^ = E H O ^

nên  D H A ^ = E H O ^ = A H F ^ ⇒ A H E ^ + A H F ^ = 180 0 ⇒ 3 điểm E, F, H  thẳng hàng.

19 tháng 5 2022

Có 1 phần câu trả lời ở đây.

Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube

Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC
mà OB=OC
nên OA là trung trực của BC

=>OA vuông góc BC tại H

=>AH*AO=AB^2

Xet ΔABD và ΔAEB có

góc ABD=góc AEB

góc BAD chung

=>ΔABD đồng dạng với ΔAEB

=>AB^2=AD*AE=AH*AO

=>AD/AO=AH/AE

=>ΔADH đồng dạng với ΔAOE
=>góc ADH=góc AOE

=>góc DHO+góc DEO=180 độ

=>DEOH nội tiếp

=>góc EHO=góc EDO

a: Xét (O) có

OI là một phần đường kính

ED là dây

I là trung điểm của ED

Do đó: OI⊥ED

Xét tứ giác OIBA có \(\widehat{OIA}=\widehat{OBA}=90^0\)

Do đó: OIBA là tứ giác nội tiếp

Suy ra: O,I,B,A cùng thuộc 1 đường tròn(1)

Xét tứ giác OBAC có 

\(\widehat{OBA}+\widehat{OCA}=180^0\)

Do đó: OBAC là tứ giác nội tiếp

Suy ra: O,B,A,C cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra I,B,C,A,O cùng thuộc một đường tròn

a) Xét tứ giác ABOC có 

\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABO vuông tại B có BH là đường cao ứng với cạnh huyền OA, ta được:

\(AH\cdot AO=AB^2\)(1)

Xét (O) có

\(\widehat{ABD}\) là góc tạo bởi tiếp tuyến BA và dây cung BD

\(\widehat{BED}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)

Do đó: \(\widehat{ABD}=\widehat{BED}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)

hay \(\widehat{ABD}=\widehat{AEB}\)

Xét ΔABD và ΔAEB có 

\(\widehat{ABD}=\widehat{AEB}\)

\(\widehat{BAD}\) chung

Do đó: ΔABD∼ΔAEB(g-g)

Suy ra: \(\dfrac{AB}{AE}=\dfrac{AD}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=AE\cdot AD\)(2)

Từ (1) và (2) suy ra \(AH\cdot AO=AD\cdot AE\)(đpcm)

 

6 tháng 3 2021

phần c ???