K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2023

a: Xét tứ giác AMHN có 

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

=>AMHN là hình chữ nhật

=>AH=MN

b: Sửa đề: MH=MD

Xét ΔAHD có

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHD cân tại A

=>AH=AD

ΔAHD cân tại A

mà AB là đường cao

nên AB là phân giác của \(\widehat{HAD}\)

=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)

Xét ΔAHE có

AC là đường cao(AC\(\perp\)EH)

AC là đường trung tuyến ứng với cạnh HE(N là trung điểm của HE, AC cắt HE tại N)

Do đó: ΔAHE cân tại A

=>AH=AE

ΔAHE cân tại A

mà AC là đường trung tuyến 

nên AC là phân giác của \(\widehat{EAH}\)

=>\(\widehat{EAH}=2\cdot\widehat{HAC}\)

\(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}\)

\(=2\left(\widehat{HAB}+\widehat{HAC}\right)=2\cdot90^0=180^0\)

=>E,A,D thẳng hàng

Xét ΔAHB và ΔADB có

AH=AD

\(\widehat{HAB}=\widehat{DAB}\)

AB chung

Do đó: ΔAHB=ΔADB

=>\(\widehat{AHB}=\widehat{ADB}=90^0\)

=>BD\(\perp\)DE(1)

Xét ΔAHC và ΔAEC có

AH=AE

\(\widehat{HAC}=\widehat{EAC}\)

AC chung

Do đó: ΔAHC=ΔAEC

=>\(\widehat{AHC}=\widehat{AEC}=90^0\)

=>CE\(\perp\)ED(2)

Từ (1),(2) suy ra BD//CE

Xét tứ giác BDEC có BD//EC

nên BDEC là hình thang

c: NF=HM

HM=NA

Do đó: NF=NA

=>N là trung điểm của AF

Xét tứ giác EFHA có

N là trung điểm chung của EH và FA

nên EFHA là hình bình hành

Hình bình hành EFHA có EH\(\perp\)FA

nên EFHA là hình thoi

a: Xét tứ giác AHCD có

M là trung điểm chung của AC và HD

góc AHC=90 độ

=>AHCD là hình chữ nhật

b: Xét tứ giác ADHE có

AD//HE

AD=HE

=>ADHE là hình bình hành