K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2020

Ta có: \(tan\alpha=2\Leftrightarrow\dfrac{sin\alpha}{cos\alpha}=2\Leftrightarrow sin\alpha=2cos\alpha\)

A = \(\dfrac{16cos^2\alpha+6cos^2\alpha}{20cos^2\alpha-2cos^2\alpha}=\dfrac{22cos^2\alpha}{18cos^2\alpha}=\dfrac{11}{9}\)

NV
25 tháng 4 2019

Nhân cả tử và mẫu của phân số chứa tan với \(sina.cosa\)

\(A=\frac{sin^2x-cos^2x}{sin^2x+cos^2x}+cos2x=sin^2x-cos^2x+cos2x=-cos2x+cos2x=0\)

\(B=\frac{1+sin4a-cos4a}{1+sin4a+cos4a}=\frac{1+2sin2a.cos2a-\left(1-2sin^22a\right)}{1+2sin4a.cos4a+2cos^22a-1}\)

\(B=\frac{2sin2a\left(sin2a+cos2a\right)}{2cos2a\left(sin2a+cos2a\right)}=\frac{sin2a}{cos2a}=tan2a\)

\(C=\frac{3-4cos2a+2cos^22a-1}{3+4cos2a+2cos^22a-1}=\frac{2\left(cos^22a-2cos2a-1\right)}{2\left(cos^22a+2cos2a+1\right)}\)

\(C=\frac{\left(cos2a-1\right)^2}{\left(cos2a+1\right)^2}=\frac{\left(1-2sin^2a-1\right)^2}{\left(2cos^2a-1+1\right)^2}=\frac{sin^4a}{cos^4a}=tan^4a\)

\(D=\frac{sin^22a+4sin^4a-\left(2sina.cosa\right)^2}{4-4sin^2a-sin^22a}=\frac{sin^22a+4sin^4a-sin^22a}{4\left(1-sin^2a\right)-\left(2sina.cosa\right)^2}=\frac{4sin^4a}{4cos^2a-4sin^2a.cos^2a}\)

\(=\frac{sin^4a}{cos^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^2a.cos^2a}=\frac{sin^4a}{cos^4a}=tan^4a\)

12 tháng 9 2023

1) \(cot\alpha=\sqrt[]{5}\Rightarrow tan\alpha=\dfrac{1}{\sqrt[]{5}}\)

\(C=sin^2\alpha-sin\alpha.cos\alpha+cos^2\alpha\)

\(\Leftrightarrow C=\dfrac{1}{cos^2\alpha}\left(tan^2\alpha-tan\alpha+1\right)\)

\(\Leftrightarrow C=\left(1+tan^2\alpha\right)\left(tan^2\alpha-tan\alpha+1\right)\)

\(\Leftrightarrow C=\left(1+\dfrac{1}{5}\right)\left(\dfrac{1}{5}-\dfrac{1}{\sqrt[]{5}}+1\right)\)

\(\Leftrightarrow C=\dfrac{6}{5}\left(\dfrac{6}{5}-\dfrac{\sqrt[]{5}}{5}\right)=\dfrac{6}{25}\left(6-\sqrt[]{5}\right)\)

1: \(cota=\sqrt{5}\)

=>\(cosa=\sqrt{5}\cdot sina\)

\(1+cot^2a=\dfrac{1}{sin^2a}\)

=>\(\dfrac{1}{sin^2a}=1+5=6\)

=>\(sin^2a=\dfrac{1}{6}\)

\(C=sin^2a-sina\cdot\sqrt{5}\cdot sina+\left(\sqrt{5}\cdot sina\right)^2\)

\(=sin^2a\left(1-\sqrt{5}+5\right)=\dfrac{1}{6}\cdot\left(6-\sqrt{5}\right)\)

2: tan a=3

=>sin a=3*cosa 

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=1+9=10\)
=>\(cos^2a=\dfrac{1}{10}\)

\(B=\dfrac{3\cdot cosa-cosa}{27\cdot cos^3a+3\cdot cos^3a+2\cdot3\cdot cosa}\)

\(=\dfrac{2\cdot cosa}{30cos^3a+6cosa}=\dfrac{2}{30cos^2a+6}\)

\(=\dfrac{2}{3+6}=\dfrac{2}{9}\)

27 tháng 6 2017

Ta có \(\sin^2\alpha+\cos^2\alpha=1\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha=1-\left(\frac{8}{17}\right)^2=\frac{225}{289}\)

Vậy B=\(4.\left(\frac{8}{17}\right)^2+3.\frac{225}{289}=\)\(\frac{931}{289}\)

13 tháng 9 2017

huhu. Mẹ ơi! Làm sao thắng nó!!! 

28 tháng 3 2022

\(A=\dfrac{\dfrac{4sin\alpha}{sin\alpha}+\dfrac{5cos\alpha}{sin\alpha}}{\dfrac{2sin\alpha}{sin\alpha}-\dfrac{3cos\alpha}{sin\alpha}}\)

\(A=\dfrac{4+5cot\alpha}{2-3cot\alpha}\)

Biết cotα=\(\dfrac{1}{2}\) nên ta có:

\(A=\dfrac{4+5\cdot\dfrac{1}{2}}{2-3\cdot\dfrac{1}{2}}\)

\(A=\dfrac{4+\dfrac{5}{2}}{2-\dfrac{3}{2}}\)

A= 13

12 tháng 10 2019

a) Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)

\(\sin\alpha=\cos\alpha\)\(2\sin^2\alpha=1\)\(\sin^2\alpha=\frac{1}{2}\)

\(\sin\alpha=\frac{1}{\sqrt{2}}\)\(\alpha=45\)độ

b) \(2\sin^2\alpha+3\cos^2\alpha=\frac{9}{4}\)

\(2\left(\sin^2\alpha+\cos^2\alpha\right)+\cos^2\alpha=\frac{9}{4}\)\(\cos^2\alpha=\frac{1}{4}\)

\(\cos\alpha=\frac{1}{2}\)\(\alpha=30\) dộ

13 tháng 10 2019

Cảm ơn cảm ơn

24 tháng 7 2020

Đề bài của mik nó ghi tanB

24 tháng 7 2020

vậy thì chệu gồi tại B với aphla không liện quan nên không tính được nha bạn

\(M=\frac{\sin^3a+3\cos^3a}{27\sin^3a-25\cos^3a}\)

\(M=\frac{\frac{\sin^3a+3\cos^3a}{\cos^3a}}{\frac{27\sin^3a-25\cos^3a}{\cos^3a}}\)

\(M=\frac{\tan^3a+3}{27\tan^3a-25}\)

\(M=\frac{\frac{8}{27}+3}{27.\frac{8}{27}-25}\)

\(M=\frac{\frac{89}{27}}{-17}\)

\(M=-\frac{89}{459}\)

P/s haphuong

17 tháng 7 2021

undefined