K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2022

bạn tải ảnh về r up lại đi bạn

31 tháng 3 2022

\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)

\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)

\(\Leftrightarrow-28x+37\ge12\)

\(\Leftrightarrow-28x\ge12-37\)

\(\Leftrightarrow-28x\ge-25\)

\(\Leftrightarrow x\le\dfrac{25}{28}\)

Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)

b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)

\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)

\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)

\(\Leftrightarrow-6x\ge30\)

\(\Leftrightarrow x\le-5\)

Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)

\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)

\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)

\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)

\(\Leftrightarrow-11x+37< 0\)

\(\Leftrightarrow-11x< -37\)

\(\Leftrightarrow x>\dfrac{37}{11}\)

vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)

NV
5 tháng 3 2021

1.a.

\(\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)\ge m\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-10\right)\ge m\)

Đặt \(x^2+3x-10=t\ge-\dfrac{49}{4}\)

\(\Rightarrow\left(t+2\right)t\ge m\Leftrightarrow t^2+2t\ge m\)

Xét \(f\left(t\right)=t^2+2t\) với \(t\ge-\dfrac{49}{4}\)

\(-\dfrac{b}{2a}=-1\) ; \(f\left(-1\right)=-1\) ; \(f\left(-\dfrac{49}{4}\right)=\dfrac{2009}{16}\)

\(\Rightarrow f\left(t\right)\ge-1\)

\(\Rightarrow\) BPT đúng với mọi x khi \(m\le-1\)

Có 30 giá trị nguyên của m

NV
5 tháng 3 2021

1b.

Với \(x=0\)  BPT luôn đúng

Với \(x\ne0\) BPT tương đương:

\(\dfrac{\left(x^2-2x+4\right)\left(x^2+3x+4\right)}{x^2}\ge m\)

\(\Leftrightarrow\left(x+\dfrac{4}{x}-2\right)\left(x+\dfrac{4}{x}+3\right)\ge m\)

Đặt \(x+\dfrac{4}{x}-2=t\) \(\Rightarrow\left[{}\begin{matrix}t\ge2\\t\le-6\end{matrix}\right.\)

\(\Rightarrow t\left(t+5\right)\ge m\Leftrightarrow t^2+5t\ge m\)

Xét hàm \(f\left(t\right)=t^2+5t\) trên \(D=(-\infty;-6]\cup[2;+\infty)\)

\(-\dfrac{b}{2a}=-\dfrac{5}{2}\notin D\) ; \(f\left(-6\right)=6\) ; \(f\left(2\right)=14\)

\(\Rightarrow f\left(t\right)\ge6\)

\(\Rightarrow m\le6\)

Vậy có 37 giá trị nguyên của m thỏa mãn

26 tháng 10 2016

Xét hiệu :

\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-\left(-1\right)=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+1.\)

Đặt \(x^2-5x+=y.\) Biểu thức trên bằng \(\left(y-1\right)\left(y+1\right)+1=y^2\ge0\)

Vậy \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\ge-1\)

6 tháng 3 2018

Xét hiệu : \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-\left(-1\right)=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+1\)

Đặt \(x^2-5x+5=y\). Biểu thức trên bằng :\(\left(y-1\right)\left(y+1\right)+1=y^2\ge0\)

Vậy \(\text{ ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − 4 ) ≥ − 1}\)

NV
29 tháng 4 2021

a.

Do \(0\le x\le1\Rightarrow\left(1+x\right)^2\ge\left(x+x\right)^2=4x^2\) (đpcm)

Dấu "=" xảy ra khi \(x=1\)

b.

Do \(x;y\in\left[0;1\right]\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\end{matrix}\right.\) \(\Rightarrow x+y\ge x^2+y^2\)

\(\Rightarrow\left(1+x+y\right)^2\ge4\left(x+y\right)\ge4\left(x^2+y^2\right)\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;0\right);\left(0;1\right)\)

18 tháng 9 2015

(x-1)(x-2)(x-3)(x-4)=(x-1)(x-4)(x-2)(x-3)=(x2-5x+4)(x2-5x+6)

đặt a=x2-5x+4

=>(x-1)(x-2)(x-3)(x-4)=a(a+2)=a2+2a

=>(x-1)(x-2)(x-3)(x-4)+1=a2+2a+1=(a+1)2>=0

=>(x-1)(x-2)(x-3)(x-4)>=-1 (dpcm)

24 tháng 4 2019

\(\left(x-4\right).\left(x+4\right)\ge\left(x+3\right)^2+5\)

\(\Rightarrow x^2-16\ge x^2+6x+9+5\)

\(\Rightarrow x^2-16\ge x^2+6x+14\)

\(\Rightarrow-30\ge6x\Rightarrow-5\ge x\)

Vậy...