Tìm a để x²+ax+9 biểu diễn được dưới dạng bình phuong của một tổng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x2 + ax + 9
= \(x^2+2.\frac{a}{2}.x+3^2\)
=\(\left(x+3\right)^2\)
Để xuất hiện hàng đẳng thức trên thì \(\frac{a}{2}=3\Rightarrow a=6\)
\(a,\)
với \(a=100\)
\(=>9x^2+30x+25=\left(3x\right)^2+2.3.5x+5^2=\left(3x_{ }+5\right)^2\)
\(b,\)
với \(a=\dfrac{1}{25}\)
\(25x^2-2x+\dfrac{1}{25}=\left(5x\right)^2-2.5.x.\dfrac{1}{5}+\left(\dfrac{1}{5}\right)^2=\left(5x-\dfrac{1}{5}\right)^2\)
\(c,\)
với \(a=6\)
\(=>x^2+2.3.x+3^2=\left(x+3\right)^2\)
\(d.\)
với \(a=\dfrac{4}{3}\)
\(=>\left(2x\right)^2-2.2.\dfrac{1}{3}x+\left(\dfrac{1}{3}\right)^2=\left(2x-\dfrac{1}{3}\right)^2\)
Bài 8:
Ta có: \(A=-x^2+2x+4\)
\(=-\left(x^2-2x-4\right)\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=1
a) Sửa đề: \(x^2+3x+1\rightarrow x^2+2x+1\)
\(x^2+2x+1=\left(x+1\right)^2\)
b) \(x^2+y^2+2xy=\left(x+y\right)^2\)
c) \(9x^2+12x+4=\left(3x+2\right)^2\)
d) \(-4x^2-9-12x=-\left(4x^2+12x+9\right)=-\left(2x+3\right)^2\)
có x2 + ax +9 = x2 + 2.\(\frac{a}{2}.x\)+ 32 = (x + 3 )2
để xuất hiện hằng đẳng thức trên thì \(\frac{a}{2}\) = 3 => a = 6