K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2022

 

a/ Xét tg vuông ABC

\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^3}=4cm\)

b/

Xét tg vuông ABD và tg vuông HBD có

BD chung 

\(\widehat{ABD}=\widehat{HBD}\) (gt)

\(\Rightarrow\Delta ABD=\Delta HBD\) (hai tg vuông có cạnh huyền và 1 góc nhọn bằng nhau)

=> DA=DH => tg DAH cân tại D

và \(\widehat{ADB}=\widehat{HDB}\) => BD là phân giác của \(\widehat{ADH}\)

=> BD là đường cao của tg DAH (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao) \(\Rightarrow BD\perp AH\left(dpcm\right)\)

21 tháng 4 2022

a) sử dụng pytago BC2=AB2+AC2 =>AC=4 b)xét ΔBAD và ΔBHD có góc A=H=90* ; góc BAD=HBD vì BD là phân giác => ΔBAD =ΔBHD =>BA=BH =>ΔABH cân tại B  mà BD là phân giác => BD đồng thời là đường cao ΔABH =>BD vuông góc AH

a) Xét ΔABC có 

\(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}\simeq53^0\)

\(\Leftrightarrow\widehat{B}=37^0\)

b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{4}=\dfrac{CD}{3}\)

mà BD+CD=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{4}=\dfrac{CD}{3}=\dfrac{BD+CD}{4+3}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{20}{7}cm;CD=\dfrac{15}{7}cm\)

17 tháng 4 2016

a) Xét tam giác ABC  vuông tại A có  AB=3 cm; BC= 5 cm

=> AB\(^2\)+BC\(^2\)=AC\(^2\)

= 3\(^2\)+5\(^2\) =AC\(^2\)

=9 + 25= AC\(^2\)

=> 34 = AC\(^2\)

=> \(\sqrt{34}\)= AC

Vậy AC = \(\sqrt{34}\) cm

17 tháng 4 2016

1) Áp dụng định lí Py-ta-go vào tam giác ABC:

BC2= AB2+ AC2

--> AC2= BC- AB2= 52 - 32= 25- 9 = 16

\(\Rightarrow\)AC = \(\sqrt{16}=4\) (cm)

2) Xét \(\Delta\)BAD và \(\Delta\)BHD :

BAD=BHD=90o 

BD chung

ABD=HBD

\(\Rightarrow\)  \(\Delta\)BAD = \(\Delta\)BHD (cạnh huyền_góc nhọn)

\(\Rightarrow\)BA=BH (2 cạnh t/ứng)

\(\Rightarrow\)B cách đều 2 đầu mút của đoạn AH \(\Rightarrow\)  BH vuông góc với AH

3) ko biết

16 tháng 3 2022

a, Theo định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=4cm\)

Vì BD là pg nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{4}{8}=\dfrac{1}{2}\Rightarrow DC=\dfrac{5}{2}cm;AD=\dfrac{3}{2}\)cm 

b, Vì DE // AB Theo hệ quả Ta lét 

\(\dfrac{DC}{AC}=\dfrac{DE}{AB}\Rightarrow DE=\dfrac{AB.DC}{AC}=\dfrac{15}{8}\)cm

a: BD=4cm

b: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra:BD=CE

c: Xét ΔABC có 

BD là đường cao

CE là đường cao

BD cắt CE tại I

Do đó: I là trực tâm của ΔABC

Suy ra: AI\(\perp\)BC

=>AH vuông góc với BC tại H

mà ΔACB cân tại A

nên AH vuông góc với BC tại trung điểm của BC

6 tháng 3 2022

Xin lỗi nhưng em mới đến phần ôn tập tam giác là cùng ạ 

24 tháng 6 2020

d) AD<DC

A B C D E F

Còn ý kia F là giao điểm vẽ mãi quên .. thôi cj vẽ tạm vậy )): 

a, Áp dụng đinh lí Py ta go ta có : 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow3^2+AC^2=5^2\)

\(\Leftrightarrow9+AC^2=25\)

\(\Leftrightarrow AC^2=16\Leftrightarrow AC=4\)cm 

b, Vì \(BD\)là p/g ^ABC 

Nên đồng thời là đg trung trực ^ABC 

Mà \(DE\perp BC\)

=> BD là đg trung trực AE

12 tháng 5 2020

a) Xét ΔABDvàΔACEcó

AB = AC (gt)

ADBˆ=AECˆ=90

Aˆ(chung)

Do đó: ΔABD=ΔACE(cạnh huyền −góc nhọn)

=>EC=AB(2 cạnh tương ứng)

a) Áp dụng Pytago dễ dàng tính được AC=4

b) Xét hai tam giác vuông ABD và HBD có 

BD cạnh chung

góc ABD = góc HBD (BD là phân giác góc B)

Nên hai tam giác trên bằng nhau (cạnh huyền - góc nhọn)

Suy ra AB = BH

AD = DH

Suy ra BD là trung trực của AH (định lý 2)

c) Ý bạn là E là giao điểm của AH và BD?

Hay E là giao điểm của DH và AB?

22 tháng 7 2018

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

22 tháng 7 2018

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

 

a:

Sửa đề tam giác DEC

Xet ΔABC vuông tại A và ΔDEC vuông tại D có

góc C chung

=>ΔABC đồng dạng với ΔDEC

b: \(BC=\sqrt{3^2+5^2}=\sqrt{34}\left(cm\right)\)

\(AD=\dfrac{2\cdot3\cdot5}{3+5}\cdot cos45=\dfrac{15\sqrt{2}}{8}\left(cm\right)\)

AD là phân giác

=>BD/AB=CD/AC

=>\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{\sqrt{34}}{8}\)

=>\(BD=\dfrac{3\sqrt{34}}{8}\left(cm\right)\)